Skip to main content
Log in

The ferrochelatase gene structure and molecular defects associated with erythropoietic protoporphyria

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Ferrochelatase [heme synthase, protoheme ferrolyase (EC 4.99.1.1)], the terminal enzyme of the heme biosynthetic pathway, catalyzes the incorporation of ferrous ion into protoporphyrin IX to form protoheme IX. The genes and cDNAs for ferrochelatase from mammals and microorganisms have been isolated. The gene for human ferrochelatase has been mapped to chromosome 18q 21.3 and consists of 11 exons with a size of about 45 kilodaltons. The induction of ferrochelatase expression occurs during erythroid differentiation, and can be attributed to the existence of the promoter sequences of erythroid-related genes. Analysis of the ferrochelatase gene in patients with erythropoietic protoporphyria, an inherited disease caused by ferrochelatase defects, revealed that molecular anomalies of ferrochelatase from 11 patients were found in 9 patients as autosomal dominant type, and 2 patients as recessive type. Diversity of the mutations of the ferrochelatase gene is also briefly described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beru, N., and Goldwasser, E. (1985).J. Biol. Chem. 260, 9251–9257.

    PubMed  Google Scholar 

  • Bloomer, J. R., Bloomer, D. A., and Mahoney, M. J. (1977).J. clin. Invest. 60, 1354–1361.

    PubMed  Google Scholar 

  • Bloomer, J. R., Morton, K. O., Reuter, R. J., and Ruth (1982).Am. J. Hum. Genet. 34, 322–330.

    PubMed  Google Scholar 

  • Bonkowsky, H. L., Bloomer, J. R., Ebert, P. S., Mahoney, M. J. (1975).J. Clin. Invest. 56, 1139–1148.

    PubMed  Google Scholar 

  • Bottomley, S. S., Tanaka, M., and Everett, M. A. (1975).J. Labo. Clin. Med. 86, 126–131.

    Google Scholar 

  • Boulechfar, S., Lamoil, J., Montagutelli, X., Guenet, J.-L., Deybach, J.-C., Nordmann, Y., Dailey, H., Grandchamp, B., and de Verneuil, H. (1993).Gemonics 16, 645–648.

    Google Scholar 

  • Brenner, D. A., Didier, J. M., Frasier, F., Christensen, S. R., Evans, G. A., and Dailey, H. A. (1992).Am. J. Hum. Genet. 50, 1203–1210.

    PubMed  Google Scholar 

  • Chan, R. F. F., Schulman, M., and Ponka, P. (1993).Biochem. J. 292, 343–349.

    PubMed  Google Scholar 

  • Chretien, S., Dubart, A., Beaupain, D., Raich, N., Grandchamp, B., Rosa, J., Gossens, M., and Romeo, P.-H. (1988).Proc. Natl. Acad. Sci. USA 85, 6–10.

    PubMed  Google Scholar 

  • Dailey, H. A., Sellers, V. M., and Dailey, T. A. (1994).J. Biol. Chem. 269, 390–395.

    PubMed  Google Scholar 

  • Fadigan, A., and Dailey, H. A. (1987).Biochem. J. 243, 419–424.

    PubMed  Google Scholar 

  • Ferreira, G., Franco, R., Lloyd, S. G., Pereira, R., Moura, I., Moura, J. J. G., Huynh, B. H. (1994).J. Biol. Chem. 269, 7062–7065.

    PubMed  Google Scholar 

  • Fujita, H., and Nagai, T. (1993).Seikagaku (Review article),65, 8–24.

    PubMed  Google Scholar 

  • Fujita, H., Yamamoto, M., Yamagami, Y., Hayashi, N., Bishop, T. R., de Verneuil, H., Yoshinaga, T., Shibahara, S., Morimoto, R., and Sassa, S. (1991).Biochim. Biophys. Acta 1090, 311–316.

    PubMed  Google Scholar 

  • Fukuda, Y., Fujita, H., Taketani, S., and Sassa, S. (1993a).Bri. J. Haematol. 83, 480–483.

    Google Scholar 

  • Fukuda, Y., Fujita, H., Taketani, S., and Sassa, S. (1993b).Bri. J. Haematol. 85, 670–675.

    Google Scholar 

  • Furukawa, T., Kohno, H., Tokunaga, R., and Taketani, S. (1995).Biochem. J. in press.

  • Humphries, R. K., Ley, T. J., Anabnou, N. P., Baur, A. W., and Nienhuis, A. W. (1984).Blood,64, 23–32.

    PubMed  Google Scholar 

  • Igarashi, K., Kataoka, K., Itoh, K., Hayashi, N., Nishizawa, W., Yamamoto, M. (1994).Nature 367, 568–572.

    PubMed  Google Scholar 

  • Kadowaki, T., Kadowaki, H., and Taylor, S. I. (1990).Proc. Natl. Acad. Sci. USA 87, 658–662.

    PubMed  Google Scholar 

  • Kappas, A., Sassa, S., Galbraith, R. A., and Nordmann, Y. (1989).In the Metabolic Basis of Inherited Disease (Scriver, C. R., Beaudet, A. L., Sly, W. S., and Valle, D. eds.), McGraw-Hill, New York, pp 1305–1365.

    Google Scholar 

  • Klausner, R. D., Rouault, T. A., and Harford, J. B. (1993).Cell 72, 19–28.

    PubMed  Google Scholar 

  • Kohno, H., Furukawa, T., Yoshinaga, T., Tokunaga, R., and Taketani, S. (1993).J. Biol. Chem. 268, 21359–21363.

    PubMed  Google Scholar 

  • Labee-Bois, R. (1990).J. Biol. Chem. 265, 7278–7283.

    PubMed  Google Scholar 

  • Lamoril, J., Boulechfar, S., de Verneuil, H., Grandchamp, B., Nordmann, Y., and Deybach, J.-C. (1991).Biochem. Biophys. Res. Commun. 181, 594–599.

    PubMed  Google Scholar 

  • Manugs, I. A., Jarrett, A., Prankert, T. A. J., and Rimington, C. (1961).Lancet ii, 448–451.

    Google Scholar 

  • Mignotte, V., Wall, L., de Boer, E., Grosveld, F., and Romeo, P.-H. (1980a).Nucleic. Acids Res. 17, 37–54.

    Google Scholar 

  • Mignotte, V., Eleouet, J. F., Raich, N., and Romeo, P.-H. (1989b).Proc. Natl. Acad. Sci. USA 86, 6548–6552.

    PubMed  Google Scholar 

  • Nakahashi, Y., Taketani, S., Sameshima, Y., and Tokunaga, R. (1990a).Biochim. Biophys. Acta 1037, 321–327.

    PubMed  Google Scholar 

  • Nakahashi, Y., Taketani, S., Okuda, M., Inoue, K., and Tokunaga, R. (1990b).Biochem. Biophys. Res. Commun. 173, 748–755.

    PubMed  Google Scholar 

  • Nakahashi, Y., Fujita, H., Taketani, S., Ishida, N., Kappas, A., and Sassa, S. (1992).Proc. Natl. Acad. Sci. USA 89, 281–285.

    PubMed  Google Scholar 

  • Nakahashi, Y., Miyazaki, H., Kadota, Y., Naitoh, Y., Inoue, K., Yamamoto, M., Hayashi, N., and Taketani, S. (1993a).Hum. Genet. 91, 303–306.

    PubMed  Google Scholar 

  • Nakahashi, Y., Miyazaki, H., Kadota, Y., Naitoh, Y., Inoue, K., Yamamoto, M., Hayashi, N., and Taketani, S. (1993b).Hum. Mol. Genet. 2, 1069–1070.

    PubMed  Google Scholar 

  • Orkin, S. H. (1990).Cell 63, 665–672.

    PubMed  Google Scholar 

  • Peters, L. L., Andrews, N. C., Eicher, R. S., Davidson, M. B., Orkin, S. H., and Lux, S. E. (1993a).Nature 362, 768–770.

    PubMed  Google Scholar 

  • Peters, L. L., Bishop, T. R., and Andrews, N. C. (1993b).Blood 82, 179a (suppl.).

    Google Scholar 

  • Philipson, S., Talbot, D., Fraser, P., and Grosveld, F. (1990).EMBO J. 9, 2159–2169.

    PubMed  Google Scholar 

  • Rutherford, T., Thompson, G. G., and Moore, M. R. (1979).Proc. Natl. Acad. Sci. USA 76, 833–836.

    PubMed  Google Scholar 

  • Sarkany, R. P. E., Alexander, G. J. M. A., and Cox, T. M. (1994a).Lancet,343, 1394–1396.

    PubMed  Google Scholar 

  • Sarkany, R. P. E., Whitcombe, D. M. and Cox, T. M. (1994b).J. Invest. Dermatol. 102, 481–484.

    PubMed  Google Scholar 

  • Sassa, S. (1976).J. Exp. Med. 143, 305–315.

    PubMed  Google Scholar 

  • Sassa, S. (1980).In vivo and in vitro Erythropoesis: The Friend System (Rosi, G. B. ed.), Elsevier/North Holland Biomedical Press, New York, pp 219–228.

    Google Scholar 

  • Sassa, S., and Urabe, A. (1979).Proc. Natl. Acad. Sci. USA 76, 5321–5325.

    PubMed  Google Scholar 

  • Sassa, S., Zalar, G. L., Poh-Fitzpatrick, M. B., Anserson, K. E., and Kappas, A. (1982).J. Clin. Invest. 69, 809–815.

    PubMed  Google Scholar 

  • Schneider-Yin, X., Schaefer, B. W., Moehr, P., Burg, G., and Minder, E. I. (1994a).Hum. Genet. 93, 711–713.

    PubMed  Google Scholar 

  • Schneider-Yin, X., Taketani, S., Schaefer, B., and Minder, E. I. (1994b).Lancet 344, 337.

    Google Scholar 

  • Taketani, S. (1993).Tohuku J. Exp. Med. (Review Article)171, 1–20.

    Google Scholar 

  • Taketani, S., Nakahashi, Y., Osumi, T., and Tokunaga, R. (1990).J. Biol. Chem. 265, 24637–24641.

    Google Scholar 

  • Taketani, S., Inazawa, J., Nakahashi, Y., Abe, T., and Tokunaga, R. (1992).Eur. J. Biochem. 205, 217–222.

    PubMed  Google Scholar 

  • Todd, D. J., Hughes, A. E., Ennis, K. T., Ward, A. J., Burrows, D., and Norman, C. N. (1993).Hum. Mol. Genet. 2, 1495–1496.

    PubMed  Google Scholar 

  • Tutois, S., Montagutelli, X., de Siva, V., Jouault, H., Rouyer-Fessard, P., Leroy-Viard, K., Guenet, J.-L., Nordmann, Y., Beuzaed, Y., and Deybach, J.-C. (1991).J. Clin. Invest. 88, 1730–1736.

    PubMed  Google Scholar 

  • Urlaub, G., Mitchell, P. J., Ciudad, C. J., and Chasin, K. A. (1989).Mol. Cell. Biol. 9, 2868–2880.

    PubMed  Google Scholar 

  • Wang, X., Poh-Fitzpatrick, M., Carriero, D., Ostasiewicz, L., Chen, T., Taketani, S., and Piomelli, S. (1993a).Biochim. Biophys. Acta 1181, 198–200.

    PubMed  Google Scholar 

  • Wang, X., Poh-Fitzpatrick, M., Takctani, S., Chen, T., and Piomelli, S. (1993b).Biochim. Biophys. Acta 1225, 187–190.

    Google Scholar 

  • Whitcombe, D. M., Carter, N. P., Albertson, D. G., Smith, S. J., Rhodes, D. A., and Cox, T. M. (1991).Hum. Mol. Genet. 2, 826.

    Google Scholar 

  • Whitcombe, D. M., Albertson, D. G., and Cox, T. M. (1994).Genomics 20, 482–486.

    PubMed  Google Scholar 

  • Yamamoto, M., Lim, K.-C., Nagai, T., Furuyama, K., and Engel, J. D. (1994).In Regulation of Heme Protein Synthesis (Fujita, H. ed.) Alpha Med Press, Dayton, Ohio pp 11–26.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taketani, S., Fujita, H. The ferrochelatase gene structure and molecular defects associated with erythropoietic protoporphyria. J Bioenerg Biomembr 27, 231–238 (1995). https://doi.org/10.1007/BF02110038

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02110038

Key words

Navigation