Skip to main content
Log in

Porphobilinogen synthase, the first source of Heme's asymmetry

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Porphobilinogen is the monopyrrole precursor of all biological tetrapyrroles. The biosynthesis of porphobilinogen involves the asymmetric condensation of two molecules of 5-aminolevulinate and is carried out by the enzyme porphobilinogen synthase (PBGS), also known as 5-aminolevulinate dehydratase. This review documents what is known about the mechanism of the PBGS-catalyzed reaction. The metal ion constitutents of PBGS are of particular interest because PBGS is a primary target for the environmental toxin lead. Mammalian PBGS contains two zinc ions at each active site. Bacterial and plant PBGS use a third metal ion, magnesium, as an allosteric activator. In addition, some bacterial and plant PBGS may use magnesium in place of one or both of the zinc ions of mammalian PBGS. These phylogenetic variations in metal ion usage are described along with a proposed rationale for the evolutionary divergence in metal ion usage. Finally, I describe what is known about the structure of PBGS, an enzyme which has as yet eluded crystal structure determination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Battle, A. M., and Stella, A. M. (1978).Int. J. Biochem. 9, 861–864.

    PubMed  Google Scholar 

  • Baum, S. J., and Plane, R. A. (1966).J. Am. Chem. Soc. 88, 910–913.

    Google Scholar 

  • Beale, S. (1994). The sequence ofChlamydomonus PBGS, submitted to GenBank 1/95, Accession Number U19876.

  • Bevan, D. R., Bodlaender, P., and Shemin, D. (1980).J. Biol. Chem. 255, 2030–2035.

    PubMed  Google Scholar 

  • Bishop, T. R., Frelin, L. P., and Boyer, S. H. (1986).Nucleic Acids Res. 14, 0115.

    Google Scholar 

  • Bishop, T. R., Hodes, Z. I., Frelin, L. P., and Boyer, S. H. (1989)Nucleic Acids Res. 17, 1775.

    PubMed  Google Scholar 

  • Bock, C., Katz, A., and Glusker, J. P. (1995).J. Am. Chem. Soc., in press.

  • Boese, Q. F., Spano, A. J., Li, J. M., and Timko, M. P. (1991).J. Biol. Chem. 266, 17060–17066.

    PubMed  Google Scholar 

  • Bröckl, G., Berchtold, M., Behr, M., and Konig, H. (1992)Gene 119, 151–152.

    PubMed  Google Scholar 

  • Chaudhry, A. G., and Jordan, P. M. (1976).Biochem. Soc. Trans. 4, 760–761.

    PubMed  Google Scholar 

  • Chauhan, S., and O'Brian, M. R. (1993).J. Bacteriol. 175, 7222–7227.

    PubMed  Google Scholar 

  • Christianson, D. W., and Lipscomb, W. N. (1986).Proc. Natl. Acad. Sci. USA 83, 7568–7572.

    PubMed  Google Scholar 

  • Clark, S. P. (1992).CABIOS 8, 535–583.

    PubMed  Google Scholar 

  • Dent, A. J., Beyersmann, D., Block, C., and Hasnain, S. S. (1990).Biochemistry 29, 7822–7828.

    PubMed  Google Scholar 

  • Echelard, Y., Dymetryszyn, J., Drolet, M., and Sasarman, A. (1988).Mol. Gen. Genet. 214, 503–508.

    PubMed  Google Scholar 

  • Evans, J. N. S., Fagerness, P. E., Mackenzie, N. E., and Scott, A. I. (1985).Magn. Reson. Chem. 23, 939–944.

    Google Scholar 

  • Fabiano, E., and Goldin, B. T. (1991).J. Chem. Soc. Perkin Trans. 1, 3371–3375.

    Google Scholar 

  • Fukuda, H., Paredes, S. R., and Batlle, A. M. (1988).Comp. Biochem. Physiol. B: Comp. Biochem. 91, 285–291.

    Google Scholar 

  • Fukuda, H., Sopena de Kracoff, Y. E., Inigo, L. E., Paredes, S. R., Ferramola de Sancovich, A. M., Sancovich, H. A., and Batlle, A. M. (1990).J. Enzyme Inhib. 3, 295–302.

    PubMed  Google Scholar 

  • Gibbs, P. N., and Jordan, P. M. (1986).Biochem. J. 236, 447–451.

    PubMed  Google Scholar 

  • Gnonlonfoun, N., Filella, M., and Berthon, G. (1991).J. Inorg. Biochem. 42, 207–215.

    PubMed  Google Scholar 

  • Gribskov, M., and Devereux, J. (1991).Sequence Analysis Primer, Stockton Press, New York.

    Google Scholar 

  • Guo, G. G., Gu, M., and Etlinger, J. D. (1994).J. Biol. Chem. 269, 12399–12402.

    PubMed  Google Scholar 

  • Gurba, P. E., Sennett, R. E., and Kobes, R. D. (1972).Arch. Biochem. Biophys. 150, 130–136.

    PubMed  Google Scholar 

  • Hampp, R., Kriebitzsch, C., and Ziegler, H. (1974).Naturwissenschaften 61, 504–505.

    PubMed  Google Scholar 

  • Hansson, M., Rutberg, L., Schroder, I., and Hederstedt, L. (1991).J. Bacteriol. 173, 2590–2599.

    PubMed  Google Scholar 

  • Hernberg, S., and Nikkanen, J. (1970).The Lancet, January 10, p. 63–64.

  • Hester, G., Brenner-Holzach, O., Rossi, F. A., Struck-Donatz, M., Winterhalter, K. H., Smit, J. D., and Piontek, K. (1991).FEBS Lett. 292, 237–242.

    PubMed  Google Scholar 

  • Indest, K., and Biel, A. J. (1994). Genbank Accession Number RCU14593.

  • Jaffe, E. K. (1993).Comments Inorg. Chem. 15, 67–93.

    Google Scholar 

  • Jaffe, E. K., and Hanes, D. (1986).J. Biol. Chem. 261, 9348–9353.

    PubMed  Google Scholar 

  • Jaffe, E. K., and Markham, G. D. (1987). [published erratum appears inBiochemistry 26, 8030, 1987].Biochemistry 26, 4258–4264.

    PubMed  Google Scholar 

  • Jaffe, E. K., and Markham, G. D. (1988).Biochemistry 27, 4475–4481.

    PubMed  Google Scholar 

  • Jaffe, E. K., Salowe, S. P., Chen, N. T., and DeHaven, P. A. (1984).J. Biol. Chem. 259, 5032–5036.

    PubMed  Google Scholar 

  • Jaffe, E. K., Markham, G. D., and Rajagopalan, J. S. (1990).Biochemistry 29, 8345–8350.

    PubMed  Google Scholar 

  • Jaffe, E. K., Bagla, S., and Michini, P. A. (1991).Biol. Trace Element Res. 28, 223–231.

    Google Scholar 

  • Jaffe, E. K., Abrams, W. R., Kaempfen, K. X., and Harris, K. A. (1992).Bioichemistry 31, 2113–2123.

    Google Scholar 

  • Jaffe, E. K., Volin, M., Myers, C. B., and Abrams, W. R. (1994).Biochemistry 33, 11554–11562.

    PubMed  Google Scholar 

  • Jaffe, E. K., Ali, S., Mitchell, L. W., Taylor, K. M., Volin, M., and Markham, G. D. (1995).Biochemistry 34, 244–251.

    PubMed  Google Scholar 

  • Jones, M. C., Jenkins, J. M., Smith, A. G., and Howe, C. J. (1994).Plant Mol. Biol. 24, 435–448.

    PubMed  Google Scholar 

  • Jordan, P. (1990). InBiosynthesis of Heme and Chlorophylls (Dailey, H. A., ed.), McGraw-Hill, New York, pp. 55–121.

    Google Scholar 

  • Jordan, P. M. (1991). InNew Comprehensive Biochemistry, Vol. 19 (Neuberger, A., and Van Deenan, L. L. M., eds.), Elsevier, Amsterdam.

    Google Scholar 

  • Jordan, P. M., and Seehra, J. S. (1980).FEBS Lett. 114, 283–286.

    PubMed  Google Scholar 

  • Kaczor, C. M., Smith, M. W., Sangwan, I., and O'Brian, M. R. (1994).Plant Physiol. 104, 1411–1417.

    PubMed  Google Scholar 

  • Li, J. M., Russell, C. S., and Cosloy, S. D. (1989).Gene 75, 177–184.

    PubMed  Google Scholar 

  • Liedgens, W., Lutz, C., and Schneider, H. A. (1983).Eur. J. Biochem. 135, 75–79.

    PubMed  Google Scholar 

  • Lingner, B., and Kleinschmidt, T. (1983).Biosciences 38, 1059–1061.

    PubMed  Google Scholar 

  • Liu, J., Lin, S., Blochet, J. E., Pegolet, M., and Lapoint, J. (1993).Biochemistry 32, 11390–11396.

    PubMed  Google Scholar 

  • Maralihalli, G. B., Rao, S. R., and Bhagwat, A. S. (1985).Phytochemistry 24, 2533–2536.

    Google Scholar 

  • Markham, G. D., Myers, C. B., Harris, K. A., Jr., Volin, M., and Jaffe, E. K. (1993).Protein Sci. 2, 71–79.

    PubMed  Google Scholar 

  • Masuoka, J., Hegenauer, J., Van Dyke, B. R., and Saltman, P. (1993).J. Biol. Chem. 268, 21533–21537.

    PubMed  Google Scholar 

  • Mitchell, L. W., Volin, M., and Jaffe, E. K. (1995)J. Biol. Chem., submitted for publication.

  • Mitchell, L. W., and Jaffe, E. K. (1993).Arch. Biochem. Biophys. 300, 169–177.

    PubMed  Google Scholar 

  • Myers, A. M., Crivellone, M. D., Koerner, T. J., and Tzagoloff, A. (1987).J. Biol. Chem. 262, 16822–16829.

    PubMed  Google Scholar 

  • Nandi, D. L. (1978).Biosciences 33, 799–802.

    PubMed  Google Scholar 

  • Nandi, D. L., and Shemin, D. (1968).J. Biol. Chem. 243, 1236–1242.

    PubMed  Google Scholar 

  • Neier, R. (1996). InAdvances in Nitrogen Heterocycles, Vol. 2 (Christopher, J. Moody, ed.), JAI Press, Greenwich, Connecticut.

    Google Scholar 

  • Pilz, I., Schwarz, E., Vuga, M., and Beyersmann, D. (1988).Biol. Chem. Hoppe-Seyler 269, 1099–1103.

    Google Scholar 

  • Polking, G. F., Hannapel, D. J., and Gladon, R. J. (1994). Submission to GenBank 3/94, Accession Number L31367.

  • Rost, B., and Sander, C. (1993).J. Mol. Biol. 232, 584–599.

    PubMed  Google Scholar 

  • Rost, B., and Sander, C. (1994).Proteins 19, 55–72.

    PubMed  Google Scholar 

  • Rost, B., Sander, C., and Schneider, R. (1994).CABIOS 10, 53–60.

    PubMed  Google Scholar 

  • Schaumburg, A., Schneider-Poetsch, H. J. A. W., and Eckerskom, C. (1992).Z. Naturforsch. Teil C J. Biosci. 47, 77–84.

    Google Scholar 

  • Seehra, J. S., and Jordan, P. M. (1981).Eur. J. Biochem. 113, 435–446.

    PubMed  Google Scholar 

  • Shemin, D. (1972).The Enzymes, 3rd edn. (Boyer, P. D., ed.), Academic Press, New York, pp. 323–337.

    Google Scholar 

  • Shemin, D. (1976).J. Biochem. 79, 37P-38P.

    PubMed  Google Scholar 

  • Shemin, D., and Russell, C. S. (1953).J. Am. Chem. Soc. 75, 4873.

    Google Scholar 

  • Smith, A. G. (1988).Biochem. J. 249, 423–428.

    PubMed  Google Scholar 

  • Sollbach, M., and Schneider-Poetsch, H. J. A. W. (1993). Submission to GenBank 9/93, Accession Number X75043.

  • Spencer, P., and Jordan, P. M. (1993).Biochem. J. 290, 279–287.

    PubMed  Google Scholar 

  • Spencer, P., and Jordan, P. M. (1994).Biochem. J. 300, 373–381.

    PubMed  Google Scholar 

  • Tsukamoto, I., Yoshinaga, T., and Sano, S. (1975).Biochem. Biophys. Res. Commun. 67, 294–300.

    PubMed  Google Scholar 

  • Tsukamoto, I., Yoshinaga, T., and Sano, S. (1979).Biochim. Biophys. Acta 570, 167–178.

    PubMed  Google Scholar 

  • Walker, C. J., and Weinstein, J. D. (1994).Biochem. J. 299, 277–284.

    PubMed  Google Scholar 

  • Wetmur, J. G., Bishop, D. F., Cantelmo, C., and Desnick, R. J. (1986).Proc. Natl. Acad. Sci. USA 83, 7703–7707.

    PubMed  Google Scholar 

  • Wu, W. H., Shemin, D., Richards, K. E., and Williams, R. C. (1974).Proc. Natl. Acad. Sci. USA 71, 1767–1770.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jaffe, E.K. Porphobilinogen synthase, the first source of Heme's asymmetry. J Bioenerg Biomembr 27, 169–179 (1995). https://doi.org/10.1007/BF02110032

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02110032

Key words

Navigation