Skip to main content
Log in

Role of scalar protons in metabolic energy generation in lactic acid bacteria

  • Original Contributions
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Lactic acid bacteria are able to generate a protonmotive force across the cytoplasmic membrane by various metabolic conversions without involvement of substrate level phosphorylation or proton pump activity. Weak acids like malate and citrate are taken up in an electrogenic process in which net negative charge is translocated into the cell thereby generating a membrane potential. The uptake is either an exchange process with a metabolic end-product (precursor/ product exchange) or a uniporter mechanism. Subsequent metabolism of the internalized substrate drives uptake and results in the generation of a pH gradient due to the consumption of scalar protons. The generation of the membrane potential and the pH gradient involve separate steps in the pathway. Here it is shown that they are nevertheless coupled. Analysis of the pH gradient that is formed during malolactic fermentation and citrate fermentation shows that a pH gradient, inside alkaline, is formed only when the uptake system forms a membrane potential, inside negative. These secondary metabolic energy generating systems form a pmf that consists of both a membrane potential and a pH gradient, just like primary proton pumps do. It is concluded that the generation of a pH gradient, inside alkaline, upon the addition of a weak acid to cells is diagnostic for an electrogenic uptake mechanism translocating negative charge with the weak acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anatharam, V., Allison, M. J., and Maloney, P. (1989).J. Biol. Chem. 264, 7244–7250.

    PubMed  Google Scholar 

  • Hugenholtz, J. (1993).FEMS Microbiol. Rev. 12, 165–178.

    Google Scholar 

  • Hugenholtz, J., Perdon, L., and Abee, T. (1993).Appl. Environ. Microbiol. 59, 4216–4222.

    Google Scholar 

  • Ishiguro, N., and Sato, G. (1985).J. Bacteriol. 164, 977–982.

    PubMed  Google Scholar 

  • Lauβermair, E., Schwarz, E., Oesterhelt, D., Reinke, H., Bayreuther, K., and Dimroth, P. (1989).J. Biol. Chem. 264, 14710–14715.

    PubMed  Google Scholar 

  • Loubiere, P., Salou, P., Pareilleux, A., and Lindley, N. D. (1993).FEMS Microbiol. Rev. 12, 45.

    Google Scholar 

  • Molenaar, D., Bosscher, J. S., Ten Brink, B., Driessen, A. J. M., and Konings, W. N. (1993).J. Bacteriol. 175, 2864–2870.

    PubMed  Google Scholar 

  • Poolman, B. (1993).FEMS Microbiol. Rev. 12, 125–148.

    Article  PubMed  Google Scholar 

  • Poolman, B. Molenaar, D., Smid, E., Ubbink, T., Abee, T., Renault, P. P., and Konings, W. N. (1991).J. Bacteriol. 173, 6030–6037.

    PubMed  Google Scholar 

  • Ramos, A., Poolman, B., Santos, H., Lolkema, J. S., and Konings, W. N. (1994).J. Bacteriol. 176, 4899–1905.

    PubMed  Google Scholar 

  • Ramos, A., Lolkema, J. S., Konings, W. N., and Santos, H. (1995).J. Bacteriol., in press.

  • Salema, M., Poolman, B., Lolkema, J. S., Loureiro Dias, M. C., and Konings, W. N. (1994).Eur. J. Biochem. 225, 289–295.

    Article  PubMed  Google Scholar 

  • van der Rest, M. E., Abee, T., Molenaar, D., and Konings, W. N. (1991).Eur. J. Biochem. 195, 71–77.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lolkema, J.S., Poolman, B. & Konings, W.N. Role of scalar protons in metabolic energy generation in lactic acid bacteria. J Bioenerg Biomembr 27, 467–473 (1995). https://doi.org/10.1007/BF02110009

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02110009

Key words

Navigation