Journal of Bioenergetics and Biomembranes

, Volume 27, Issue 4, pp 459–466 | Cite as

ATPase activity, IF1 content, and proton conductivity of ESMP from control and ischemic slow and fast heart-rate hearts

  • W. Rouslin
  • C. W. Broge
  • F. Guerrieri
  • G. Capozza
Original Contributions


Earlier studies by Rouslin and coworkers showed that, during myocardial ischemia in slow heart-rate species which include rabbits and all larger mammals examined including humans, there is an IF1-mediated inhibition of the mitochondrial ATPase due to an increase in the amount of IF1, bound to the ATPase (Rouslin, W., and Pullman, M.E.,J. Mol. Cell. Cardiol.19, 661–668, 1987). Earlier work by Guerrieri and colleagues demonstrated that IF1 binding to bovine heart ESMP was accompanied by parallel decreases in ATPase activity and in passive proton conduction (Guerrieri, F.,et al., FEBS Lett.213, 67–72, 1987). In the present study rabbit was used as the slow heart-rate species and rat as the fast heart-rate species. Rat is a fast heart-rate species that contains too little IF1 to down regulate the ATPase activity present. Mitochondria were prepared from control and ischemic hearts and ESMP were made from aliquots by sonication at pH 8.0 with 2 mM EDTA. Oligomycin-sensitive ATPase activity and IF1 content were measured in SMP prepared from the control and ischemic mitochondrial samples. After identical incubation procedures, oligomycin-sensitive ATPase activity, oligomycin-sensitive proton conductivity, and IF1 content were also measured in ESMP samples. The study was undertaken to corroborate further what appear to be fundamental differences in ATPase regulation between slow and fast heart-rate mammalian hearts evident during total myocardial ischemia. Thus, passive proton conductivity was used as an independent measure of these regulatory differences. The results show that, consistent with the low IF1 content of rat heart cardiac muscle mitochondria, control rat heart ESMP exhibit approximately twice as much passive proton conductivity as control rabbit heart ESMP regardless of the pH of the incubation and assay. Moreover, while total ischemia caused an increase in IF1 binding and a commensurate decrease in passive proton conductivity in rabbit heart ESMP regardless of pH, neither IF1 content nor proton conductivity changed significantly in rat heart ESMP as a result of ischemia.

Key words

Slow and fast heart-rate hearts control and ischemic hearts mitochondrial ATPase activity mitochondrial ATPase inhibitor protein IF1 oligomycin-sensitive proton conductivity rabbit and rat heart ESMP 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Capaldi, R. A., Aggeler, R., Gogol, E. P., and Wilkens, S. (1992).J. Bioenerg. Biomembr. 24, 435–425.CrossRefPubMedGoogle Scholar
  2. Capaldi, R. A., Aggeler, R., Turina, P., and Wilkens, S. (1994).Trends Biochem. Sci. 19, 284–289.CrossRefPubMedGoogle Scholar
  3. Frangione, B., Rosenwasser, R., Penefsky, H. S., and Pullman, M. E. (1981).Proc. Natl. Acad. Sci. USA 78, 7403–7407.PubMedGoogle Scholar
  4. Guerrieri, F., Scarfo, R., Zanotti, F., Che, Y.-W., and Papa, S. (1987a).FEBS Lett. 213, 67–72.CrossRefPubMedGoogle Scholar
  5. Guerrieri, F., Zanotti, F., Che, Y.-W., Scarfo, R., and Papa, S. (1987b).Biochim. Biophys. Acta.892, 284–298.PubMedGoogle Scholar
  6. Husain, I., and Harris, D. A. (1983).FEBS Lett. 160, 110–114.CrossRefPubMedGoogle Scholar
  7. Klein, G., Satre, M., Dianoux, A.-C, and Vignais, P. V. (1980).Biochemistry 19, 2919–2925.CrossRefPubMedGoogle Scholar
  8. Klein, G., and Vignais, P. V. (1983).J. Bioenerg. Biomembr. 15, 347–362.CrossRefGoogle Scholar
  9. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951).J. Biol. Chem. 193, 265–275.PubMedGoogle Scholar
  10. Nobes, C. D., Brown, G. C., Olive, P. N., and Brand, M. D. (1990).J. Biol. Chem. 265, 12903–12909.PubMedGoogle Scholar
  11. Pansini, A., Guerrieri, F., and Papa, S. (1978).Eur. J. Biochem. 94, 545–557.CrossRefGoogle Scholar
  12. Porter, R. K., and Brand, M. D. (1993).Nature (London) 362, 628–630.CrossRefGoogle Scholar
  13. Pullman, M. E. (1986). InMethods in Enzymology (Fleischer, S., and Fleischer, B., eds.), Vol. 125, Academic Press, Orlando, pp. 460–470.Google Scholar
  14. Pullman, M. E., and Monroy, G. C. (1963).J. Biol. Chem. 238, 3762–3769.PubMedGoogle Scholar
  15. Rouslin, W. (1983a).J. Biol. Chem. 258, 9657–9661.PubMedGoogle Scholar
  16. Rouslin, W. (1983b).Am. J. Physiol. 244, H743-H748.PubMedGoogle Scholar
  17. Rouslin, W. (1987a).Am. J. Physiol. 252, H622-H627.PubMedGoogle Scholar
  18. Rouslin, W. (1987b).J. Biol. Chem. 262, 3472–3476.PubMedGoogle Scholar
  19. Rouslin, W. (1988).J. Mol. Cell. Cardiol. 20, 999–1007.CrossRefPubMedGoogle Scholar
  20. Rouslin, W. (1991).J. Bioenerg. Biomembr. 23, 873–888.CrossRefPubMedGoogle Scholar
  21. Rouslin, W., and Broge, C. W. (1989).J. Biol. Chem. 264, 15224–15229.PubMedGoogle Scholar
  22. Rouslin, W., and Broge, C. W. (1990).Arch. Biochem. Biophys. 280, 103–111.CrossRefPubMedGoogle Scholar
  23. Rouslin, W., and Broge, C. W. (1993).Arch. Biochem. Biophys. 303, 443–450.CrossRefPubMedGoogle Scholar
  24. Rouslin, W., and Broge, C. W. (1994).Anal. Biochem. 222, 68–75.CrossRefPubMedGoogle Scholar
  25. Rouslin, W., and Broge, C. W. (1995).J. Bioenerg. Biomembr. 27, 117–125.CrossRefPubMedGoogle Scholar
  26. Rouslin, W., and Pullman, M. E. (1987).J. Mol. Cell. Cardiol. 19, 661–668.PubMedGoogle Scholar
  27. Rouslin, W., Erickson, J. L., and Solaro, R. J. (1986).Am. J. Physiol. 250, H503-H508.PubMedGoogle Scholar
  28. Rouslin, W., Broge, C. W., and Grupp, I. L. (1990).Am. J. Physiol. 259, H1759-H1766.PubMedGoogle Scholar
  29. Schwertzmann, K., and Pedersen, P. L. (1981).Biochemistry 250, 1–18.Google Scholar
  30. Tzagoloff, A., Byington, K. H., and MacLennan, D. H. (1968).J. Biol. Chem. 243, 2405–2412.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • W. Rouslin
    • 1
  • C. W. Broge
    • 1
  • F. Guerrieri
    • 2
  • G. Capozza
    • 2
  1. 1.Department of Pharmacology and Cell BiophysicsUniversity of Cincinnati College of MedicineCincinnati
  2. 2.Institute of Medical Biochemistry and Chemistry and Center for the Study of Mitochondria and Energy Metabolism (C.N.R.)University of BariBariItaly

Personalised recommendations