Journal of Bioenergetics and Biomembranes

, Volume 28, Issue 1, pp 59–68 | Cite as

Subunit 8 of theSaccharomyces cerevisiae cytochromebc1 complex interacts with succinate-ubiquinone reductase complex

  • Christophe Bruel
  • Robert Brasseur
  • Bernard L. Trumpower
Original Article


We have investigated the function of subunit 8 of the cytochromebc1 complex by generating six site-directed mutants, F46C, R51S, P62V, G64A, R91N, and W69-stop, in the clonedQCR8 gene and expressing the mutated genes in aSaccharomyces cerevisiae strain in which the chromosomal copy ofQCR8 is deleted. The W69-stop mutation impairs assembly of thebc1 complex and growth of yeast on nonfermentable carbon sources as does deletion ofQCR8 [Maarse, A. C., De Haan, M., Schoppink, P. J., Berden, J. A., and Grivell, L. A. (1988).Eur. J. Biochem.172, 179–184], implying that the C-terminus of subunit 8 is important for assembly and/or the stability of thebc1 complex. The F46C, R51S, P62V, G64A, and R91N mutations do not affect the growth of yeast on nonfermentable carbon sources, not do they lower the activity or alter the inhibitor sensitivity of thebc1 complex. Rather, some of the mutations increase the cytochromec reductase activity of thebc1 complex by as much as 40%. However, succinate-ubiquinone reductase activity was consistently reduced 40–60% in mitochondrial membranes from these mutants, while NADH-ubiquinone reductase activity was not affected. In addition, the activation of succinate-ubiquinone reductase activity by succinate was diminished by the F46C, R51S, P62V, and G64A mutations. These results indicate that the cytochromebc1 complex participates in electron transfer from succinate to ubiquinonein situ and also suggest an interaction between succinate-ubiquinone reductase and cytochromebc1 complex which involves subunit 8 of thebc1 complex.


Organic Chemistry Carbon Source Electron Transfer Succinate Mitochondrial Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ackrell, B. A. C., Kearney, E. B., and Singer, T. P. (1978).Methods Enzymol:LIII part D, 466–495.Google Scholar
  2. Borchart, U., Machleidt, W., Schägger, H., Link, T. A., and von Jagow, G. (1986).FEBS Lett. 200, 81–86.CrossRefPubMedGoogle Scholar
  3. Brandt, U., Uribe, S., Schägger, H., and Trumpower, B. L. (1994).J. Biol. Chem. 269, 12947–12953.PubMedGoogle Scholar
  4. Brasseur, R. (1988).J. Biol. Chem. 263, 12571–12575.PubMedGoogle Scholar
  5. Brasseur, R., Meutter, J. D., Vanloo, B., Goormaghtigh, E., Ruysschaert, J. M., and Rosseneu, M. (1990).Biochim. Biophys. Acta 1043, 245–252.PubMedGoogle Scholar
  6. Chen, M., Liu, B.-L., Gu, L.-Q., and Zhu, Q.-S. (1986).Biochim. Biophys. Acta 851, 469–474.PubMedGoogle Scholar
  7. Eisenberg, D. (1984).Annu. Rev. Biochem. 53, 595–623.CrossRefPubMedGoogle Scholar
  8. Eisenberg, D., Weiss, R. M., and Terwilliger, T. C. (1982).Nature 299, 371–374.CrossRefPubMedGoogle Scholar
  9. Gwak, S.-H., Yu, L., and Yu, C.-A. (1986).Biochemistry 25, 7675–7682.CrossRefPubMedGoogle Scholar
  10. Hemrika, W. (1994).Yeast Ubiquinol-Cytochrome c Oxidoreductase: Studies on the Location and the Function of the 14-kDa and the 11-kDa Subunits. Ph.D. thesis, University of Amsterdam, The Netherlands.Google Scholar
  11. Hemrika, W., Berden, J. A., and Grivell, L. A. (1993).Eur. J. Biochem. 215, 601–609.CrossRefPubMedGoogle Scholar
  12. Jones, J. S., and Prakash, L. (1990).Yeast 6, 363–366.CrossRefPubMedGoogle Scholar
  13. Le, L., Brasseur, R., Wemers, C., Meulemans, G., and Burny, A. (1988).Virus Genes 1, 333–350.CrossRefPubMedGoogle Scholar
  14. Lins, L., Brasseur, R., Rosseneu, M., Vanloo, B. and Ruysschaert, J.-M. (1993).Biochim. Biophys. Acta 1149, 267–277.PubMedGoogle Scholar
  15. Loof, H. D., Rosseneu, M., Brasseur, R., and Ruysschaert, J. M. (1986).Proc. Natl. Acad. Sci. USA 83, 2295–2299.PubMedGoogle Scholar
  16. Maarse, A. C., and Grivell, L. A. (1987).Eur. J. Biochem 165, 419–425.CrossRefPubMedGoogle Scholar
  17. Maarse, A. C., Haan, M. D., Schoppink, P. J., Berden, J. A., and Grivell, L. A. (1988).Eur. J. Biochem. 172, 179–184.CrossRefPubMedGoogle Scholar
  18. Ohnishi, T., and Trumpower, B. L. (1980).J. Biol. Chem. 255, 3278–3284.PubMedGoogle Scholar
  19. Schägger, H., Link, T. A., Engel, W. D., and Von Jagow, G. (1986).Meth. Enzymol. 126, 224–237.PubMedGoogle Scholar
  20. Schoppink, P. J., Jong, M. D., Berden, J. A. and Grivell, L. A. (1989).Eur. J. Biochem. 181, 681–687.CrossRefPubMedGoogle Scholar
  21. Sherman, F., and Hicks, J. (1991).Meth. Enzymol. 194, 21–37.PubMedGoogle Scholar
  22. Southern, E. M. (1975).J. Mol. Biol. 98, 503–517.PubMedGoogle Scholar
  23. Thomas, D. D., Dalton, L. R., and Hyde, J. S. (1976).J. Chem. Phys. 65, 3006–3024.CrossRefGoogle Scholar
  24. Treco, D. A., and Lundblad, V. (1989). InCurrent Protocols in Molecular Biology (Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., and Struhl, K., eds.) Wiley, New York, pp. 13.1.1–13.1.4.Google Scholar
  25. Trumpower, B. L. (1990).Microbiol. Rev. 54, 102–129.Google Scholar
  26. Usui, S., Yu, L., and Yu, C.-A. (1990).Biochemistry 29, 4618–4626.CrossRefPubMedGoogle Scholar
  27. Yu, C.-A., and Yun, L. (1981).Biochim. Biophys. Acta 639, 99–128.PubMedGoogle Scholar
  28. Yu, L., and Yu, C.-A. (1982).J. Biol. Chem. 257, 10215–10221.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Christophe Bruel
    • 1
  • Robert Brasseur
    • 1
  • Bernard L. Trumpower
    • 1
  1. 1.Department of BiochemistryDartmouth Medical SchoolHanover

Personalised recommendations