Journal of Radioanalytical and Nuclear Chemistry

, Volume 215, Issue 1, pp 103–110 | Cite as

Optimized automated activation analysis

  • N. N. Papadopoulos
  • G. E. Hatzakis
  • A. C. Salevris
  • N. F. Tsagas
Short-Lived Nuclides and Quality Control


A combination of special techniques has been developed for optimization of experimental conditions in order to improve the analytical capability, to facilitate automation and to broaden the applicability of instrumental neutron activation analysis. The techniques used are: (1) compensation for the rapid radioactive decay of short-lived nuclides with the increase of the counting efficiency by automatic source movement to the detector during the counting period, to minimize count rate variations and to prolong the counting period, (2) repeated cyclic and cumulative activation to improve the counting statistics, (3) instrumental correction of counting losses at high and varying count rates by a loss-free counting system and (4) differentiation of the reactor neutron spectrum to enhance the counts from the nuclides of interest by reducing matrix interferences. By optimized combination and automation of these techniques significant improvement of the capability of instrumental neutron activation analysis can be achieved.


Count Rate Instrumental Neutron Activation Analysis Neutron Spectrum Counting Efficiency Reactor Neutron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. N. Papadopoulos, J. Radioanal. Chem., 72 (1982) 463.Google Scholar
  2. 2.
    N. N. Papadopoulos, N. F. Tsagas, Analyst, 119 (1994) 613.Google Scholar
  3. 3.
    N. N. Papadopoulos, N. M. Spyrou, N. F. Tsagas, G. E. Hatzakis, J. Radioanal. Nucl. Chem., 192 (1995) 55.Google Scholar
  4. 4.
    S. J. Parry, J. Radioanal. Chem., 72 (1982) 195.Google Scholar
  5. 5.
    N. M. Spyrou, Ch. Adesanmi, P. M. Kidd, L. G. Stephens-Newsham, A. Z. Ortaovali, F. Ozek, J. Radioanal. Chem., 72 (1982) 155.Google Scholar
  6. 6.
    G. P. Westphal, J. Radioanal. Chem., 70 (1982) 387.Google Scholar
  7. 7.
    G. P. Westphal, Nucl. Instr. Meth. Phys. Res., B10/11 (1985) 1047.Google Scholar
  8. 8.
    G. P. Westphal, J. Radioanal. Nucl. Chem., 114 (1987) 257.Google Scholar
  9. 9.
    G. P. Westphal, Th. Kasa, W. Roch, J. Radioanal. Nucl. Chem., 110 (1987) 9.Google Scholar
  10. 10.
    G. P. Westphal, J. Radioanal. Nucl. Chem., 141 (1990) 407.Google Scholar
  11. 11.
    G. P. Westphal, K. Joestl, B. Lipp, P. Schroeder, J. Radioanal. Nucl. Chem., 160 (1992) 395.Google Scholar
  12. 12.
    G. P. Westphal, J. Radioanal. Nucl. Chem., 179 (1994) 45.Google Scholar
  13. 13.
    F. Grass, J. Radioanal. Chem., 70 (1982) 411.Google Scholar
  14. 14.
    F. Grass, Trans. ANS, 62 (1990) 220.Google Scholar
  15. 15.
    N. N. Papadopoulos, N. F. Tsagas, J. Radioanal. Nucl. Chem., 151 (1991) 95.Google Scholar
  16. 16.
    N. N. Papadopoulos, N. F. Tsagas, Biological Trace Element Research, Humana Press Journal, 43–45 (1994) 125.Google Scholar
  17. 17.
    W. Westmeier, IAEA Mission Report 544/GRE/2/023-01, 1995.Google Scholar
  18. 18.
    A. Kyritsi, G. D. Kanias, C. Tzia, Trace element nutritional value in dried desert, 9th Int. Conf. on Modern Trends in Activation Analysis, Seoul, Korea, 24–30 Sept. 1995, Log No. 198.Google Scholar

Copyright information

© Akadémiai Kiadó 1997

Authors and Affiliations

  • N. N. Papadopoulos
    • 1
  • G. E. Hatzakis
    • 1
  • A. C. Salevris
    • 1
  • N. F. Tsagas
    • 2
  1. 1.National Centre for Scientific Research “Demokritos”AthensGreece
  2. 2.Democritus University of ThraceXanthiGreece

Personalised recommendations