Skip to main content
Log in

An old-new tool for nuclear analysis: Time-of-Flight spectrometry

  • General Topics
  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The Time-of-Flight (ToF) technique can be used for mass identification, for separation of a specified mass or for measuring the energy of a given mass particle. The instrumentation required is simple and low in cost. The method features high yield, transmission efficiency is typically of 5 to 20%. Even with short flight paths (5 to 10 cm), ToF has adequate mass resolution (M/ΔM∼300 to 500) for identifying isotopic species. This paper examines the scope of ToF in nuclear science with examples in mass spectrometry, in mass separation and in kinetic energy measurements of fixed mass particles. An example of the latter is the energy determination of recoil nuclei. If a recoil is produced inside a solid, the residual recoil energy reveals the depth from which it originates. This approach is used for profiling nitrogen via14N(n, p)14C. The ToF measurement of the14C recoil energies reveals the depth distribution of nitrogen with better than 50 Å resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. L. Burlingame, R. K. Boyd, S. K. Gaskell, Anal. Chem., 66 (1994) 684R.

    Google Scholar 

  2. M. C. Michel, UCRL 2267, 1953.

  3. S. Thulin, Arkiv Fys., 4 (1952) 363.

    Google Scholar 

  4. J. Von Pulker, E. Ritter, Vakuum Technik, 14 (1965) 91.

    Google Scholar 

  5. I. Bergstron, K. Bjorkquist, B. Domeij, G. Fladda, S. Anderson, Can. J. Phys., 46 (1968) 2679.

    Google Scholar 

  6. D. J. Keith, Ph.D. Dissertation, Texas A & M University, 1983.

  7. C. F. Feldman, J. W. Mayer, Fundamentals of Surface and Thin Film Analysis, Elsevier Science Publishing Co., Amsterdam, 1986.

    Google Scholar 

  8. R. A. Weller, Nucl. Instr. Meth. Phys. Res., B47 (1993) 193.

    Google Scholar 

  9. A. Chevarier, N. Chevarier, S. Chiodelli, Nucl. Instr. Meth., 189 (1981) 525.

    Google Scholar 

  10. M. Döbeli, P. C. Haubert, R. P. Livi, S. J. Spicklemire, D. L. Weathers, T. A. Tombrello, Nucl. Instr. Meth. Phys. Res., B47 (1990) 148.

    Google Scholar 

  11. R. T. Sullins, C. V. Barros Leite, E. A. Schweikert, J. Radioanal. Chem., 78 (1983) 171.

    Google Scholar 

  12. J. F. Zeigler, G. W. Cole, J. E. Baglin, J. Appl. Phys., 43 (1972) 3809.

    Google Scholar 

  13. R. G. Downing, R. F. Fleming, J. K. Langland, D. H. Vincent, Nucl. Instr. Meth., 218 (1983) 47.

    Google Scholar 

  14. G. P. Lamaze, R. G. Downing, J. K. Langland, S. T. Hwang, J. Radioanal. Nucl. Chem., 160 (1992) 315.

    Google Scholar 

  15. J. T. Maki, R. F. Fleming, D. H. Vincent, Nucl. Instr. Meth., B17 (1986) 147.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schweikert, E.A., Welsh, J.F. An old-new tool for nuclear analysis: Time-of-Flight spectrometry. J Radioanal Nucl Chem 215, 23–30 (1997). https://doi.org/10.1007/BF02109873

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02109873

Keywords

Navigation