Advertisement

Siberian Mathematical Journal

, Volume 36, Issue 3, pp 506–516 | Cite as

Explicit-implicit domain decomposition methods for solving parabolic equations

  • Yu. M. Laevskii
  • S. V. Gololobov
Article

Keywords

Parabolic Equation Decomposition Method Domain Decomposition Domain Decomposition Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu. M. Laevskii, “The domain decomposition methods for solving two-dimensional parabolic equations,” in: Variational-Difference Methods in Problems of Numerical Analysis [in Russian], Vychisl. Tsentr (Novosibirsk), Novosibirsk, 1987, pp. 112–128.Google Scholar
  2. 2.
    P. N. Vabishchevich, “Difference schemes for decomposing the calculation domain in solving nonstationary problems,” Zh. Vychisl. Matematiki i Mat. Fiziki,29, No. 12, 1822–1829 (1989).Google Scholar
  3. 3.
    M. Dryja, Substructuring Methods for Parabolic Problems, Tech. Rep. 529, New York University, Computer Sci. Depart., New York (1960).Google Scholar
  4. 4.
    R. Rannacher, “A domain decomposition algorithm for parabolic problems,” in: Abstracts: Das Zentrum für Praktische Mathematik Wird Gefördert von der Volkswagen-Stiftung, The Summer Conference on Domain Decomposition in Lambrecht, Germany, 1991.Google Scholar
  5. 5.
    C. N. Dawson and Q. Du, “A domain decomposition method for parabolic equations based on finite elements,” in: Abstracts: Fourth International Symposium on Domain Decomposition Methods for Partial Differential Equations, Proc. Symp., Moscow, 1990, pp. 255–263.Google Scholar
  6. 6.
    C. N. Dawson and T. F. Dupont, “Noniterative domain decomposition for second-order hyperbolic problems,” in: Abstracts: Domain Decomposition Methods in Science and Engineering, Villa Olmo, Como (Italy), 1992, p. 11.Google Scholar
  7. 7.
    Yu. M. Laevskii, “On a domain decomposition algorithm without overlapping subdomains in solving parabolic equations,” Zh. Vychisl. Matematiki i Mat. Fiziki,32, No. 11, 1744–1755 (1992).Google Scholar
  8. 8.
    T. Mathew, G. Russo, and J. Wang, “A domain decomposition based splitting method for solving parabolic problems,” in: Abstracts: Domain Decomposition Methods in Science and Engineering, Penn. St. University, Pennsylvania, 1993.Google Scholar
  9. 9.
    Yu. M. Laevsky, “On a domain decomposition method for parabolic problems,” Bull. Novosibirsk Computing Center Ser. Numerical Analysis, No. 1, 41–62 (1993).Google Scholar
  10. 10.
    Yu. M. Laevsky, “On the explicit-implicit domain decomposition method for parabolic problems,” Bull. Novosibirsk Computing Center Ser. Numerical Analysis, No. 2, 79–90 (1993).Google Scholar
  11. 11.
    Yu. M. Laevskii, “On a domain decomposition for parabolic problems with discontinuous solutions and the penalty method,” Zh. Vychisl. Matematiki i Mat. Fiziki,34, No. 5, 702–719 (1994).Google Scholar
  12. 12.
    Yu. M. Laevskii and S. A. Litvinenko, On a Domain Decomposition Method with the Component-Wise Splitting of a Solution to Parabolic Equations [Preprint, No. 991] [in Russian], Vychisl. Tsentr (Novosibirsk), Novosibirsk (1993).Google Scholar
  13. 13.
    I. Babuška, “The finite element method with penalty,” Math. Comp.,27, No. 122, 221–228 (1973).Google Scholar
  14. 14.
    V. O. Lokutsievskii and O. V. Lokutsievskii, Application of the ChebyshËv Parameters for Numerical Solution of Some Evolution Problems [Preprint, No. 98] [in Russian], IMP (Moscow), Moscow (1984).Google Scholar
  15. 15.
    V. I. Lebedev, Explicit Difference Schemes with Variable Time Mesh-Size for Solving Stiff Systems of Equations [Preprint, No. 177] [in Russian], OVM (Moscow), Moscow (1987).Google Scholar
  16. 16.
    V. I. Lebedev, “How to solve stiff systems of differential equations by explicit methods?” in: Computational Processes and Systems [in Russian], Moscow, 1991, No. 8, pp. 237–291.Google Scholar
  17. 17.
    Yu. M. Laevsky, “The use of the Lanczos polynomials for solving parabolic equations,” in: Numerical Methods and Applications, Publ. House Bulg. Acad. Sci., Sofia, 1989, pp. 244–249.Google Scholar
  18. 18.
    A. V. Gulin and A. A. Samarskii, “On stability of a certain class of difference schemes,” Differentsial'nye Uravneniya,29, No. 7, 1163–1173 (1993).Google Scholar
  19. 19.
    O. A. Ladyzhenskaya, Boundary Value Problems of Mathematical Physics [in Russian], Nauka, Moscow (1973).Google Scholar
  20. 20.
    P. G. Ciarlet, The Finite Element Method for Elliptic Problems [Russian translation], Mir, Moscow (1980).Google Scholar
  21. 21.
    Yu. M. Laevskii, The Finite Element Method of Solving Many-Dimensional Parabolic Equations [in Russian], Novosibirsk Univ., Novosibirsk (1993).Google Scholar
  22. 22.
    S. G. Mikhlin, Variational Methods in Mathematical Physics [in Russian], Nauka, Moscow (1970).Google Scholar
  23. 23.
    D. K. Faddeev and V. N. Faddeeva, Computational Methods of Linear Algebra [in Russian], Fizmatgiz, Moscow-Leningrad (1963).Google Scholar
  24. 24.
    A. A. Samarskii, Introduction to the Theory of Difference Schemes [in Russian], Nauka, Moscow (1971).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • Yu. M. Laevskii
    • 1
  • S. V. Gololobov
    • 1
  1. 1.Novosibirsk

Personalised recommendations