Skip to main content
Log in

Estimates for the efficient production of antihydrogen by lasers of very high intensities

  • Papers
  • Published:
Opto-electronics Aims and scope Submit manuscript

Abstract

Starting from the non-linear relativistic equations of motion for charged particles in the very high intensity fields of laser radiation, the maximum kinetic energy ɛkin of the resulting oscillation is derived exactly. In non-relativistic conditions ɛkin agrees with the well-known valuee 2 E v 2/(2m0ω2|n|), showing a dependence on the rest massm 0 of the particle. In the relativistic case, the mass dependence vanishes. The multipole radiation is calculated on the basis of Sommerfeld's formula for relativistic conditions. It is shown that this radiation is not important for oscillation energies up to\( \in _{kin^{mr} } \)=70m 0 c 2 for electrons in neodymium glass laser radiation and up to higher values for CO2 lasers and for protons. With the limitationm 0 c 2 < εkin <\( \in _{kin^{mr} } \), the formula for ɛkin is used to calculate the pair production (a) for singly oscillating particles in vacuum without collisions and (b) for plasmas with collisions. Taking into account the local increase of the effective electric laser field near the cut-off density due to the decrease of ¦n¦ (n is the complex refractive index), there is the possibility of efficient proton pair production at intensities of 1019 W cm−2 for neodymium glass lasers and of 1017 W cm−2 for CO2 lasers, besides electron pair production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. V. Bunkin andA. M. Prokhorov, Polarization Matiere et Rayounement, Volume Jubilaire en l'Bonneur d'Alfred Kastler, Paris (1969);N. G. Basov andN. Krokhin, Seminar at Lebedev Inst., 1969.

  2. F. V. Bunkin andA. E. Kazakov,Sov. Phys. Doklady 15 (1971) 758–759.

    Google Scholar 

  3. T. W. Kibble,Phys. Rev. 138B (1965) 740–753.

    Article  Google Scholar 

  4. W. Heisenberg,Z. Physik 90 (1934) 209–231.

    Article  Google Scholar 

  5. A. Sommerfeld, ‘Vorlesungen Vol. III, Elektrodynamik,’ Wiesbaden (1948) 294.

  6. H. Hora,Phys. Fluids 12 (1969) 182–191.

    Article  Google Scholar 

  7. Th. Erber,Rev. Mod. Phys. 38 (1966) 626–659.

    Article  Google Scholar 

  8. R. Kidder, Varenna Summer School (July 1969), UCRL-Preprint 71775 (1969).

  9. L. Spitzer, Jr., ‘Physics of Fully Ionized Plasmas’, Interscience, New York (1956).

    Google Scholar 

  10. H. Hora, D. Pfirsch, andA. Schlüter,Z. Naturforsch 22a (1967) 278.

    Google Scholar 

  11. J. Lindl andP. Kaw,Phys. Fluids 14 (1971) 371–377.

    Article  Google Scholar 

  12. L. C. Steinhauer andH. G. Ahlstrom,13 (1970) 1103–1105.

    Article  Google Scholar 

  13. H. Hora,Opto-Electronics 2 (1970) 201–214.

    Article  Google Scholar 

  14. H. Hora, ‘Laser Interaction and Related Plasma Phenomena’, eds.H. Schwartz andH. Hora, Plenum, New York, Vol. II (1972) 341.

    Google Scholar 

  15. P. Mulser andB. Green — see Fig. 5 of Reference 14.

  16. B. Green andP. Mulser, ‘Laser Interaction and Related Plasma Phenomena,’ eds. H. Schwarz and H. Hora, Plenum, New York, Vol. II (1972) 381.

    Google Scholar 

  17. J. W. Shearer, R. E. Kidder, andJ. W. Zink,Bull. Am. Phys. Soc. 15 (1970) 1483.

    Google Scholar 

  18. J. W. Shearer, LLL (Livermore) Report UCRL-51254 (Aug. 1972).

  19. F. F. Chen,Comments on Plasma Physics 1 (1972) 81.

    Google Scholar 

  20. R. Klima,Plasma Physics 12 (1970) 123.

    Article  Google Scholar 

  21. J. Nuckolls, L. Wood, A. Thiessen, andG. Zimmermann, Paper presented at the VII International Quantum Electronics Conference, Montreal (May 1972).

  22. K. Nishikawa,J. Phys. Soc. Japan 24 (1968) 916–922.

    Article  Google Scholar 

  23. J. F. Freidberg andB. M. Marder,Phys. Rev. A4 (1971) 1549–1553;P. K. Kaw andJ. M. Dawson,Phys. Fluids 12 (1969) 2586–2591;W. L. Kruer andJ. M. Dawson, ‘Laser Interaction and Related Plasma Phenomena’, eds. H. Schwarz and H. Hora, Plenum, New York Vol. II (1972) 317.

    Google Scholar 

  24. The relativistic istabilities would cause complications if circulary polarized light were used: (C. Max andF. Perkins,Phys. Rev. Letters 29 (1972) 1731–1734).

    Article  Google Scholar 

  25. For linear polarized light howeverP. Kaw andJ. Dawson,Phys. Fluids 13 (1970) 472 demonstrated an increase of the transparency of the plasma. Therefore the ‘effective collisions’ decrease, losses by absorption diminish, and the desired dielectric effects which decrease ¦n¦ and so increase the effective electric field strength became more pronounced.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hora, H. Estimates for the efficient production of antihydrogen by lasers of very high intensities. Opto-electronics 5, 491–501 (1973). https://doi.org/10.1007/BF02109654

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02109654

Keywords

Navigation