Surgical and Radiologic Anatomy

, Volume 9, Issue 3, pp 241–249 | Cite as

A physico-mathematical model for the human femur, with and without a prosthesis, under the static constraints of one-legged stance

  • J. C. Ferré
  • R. Legoux
  • F. Marquet
  • C. Chevalier
  • J. L. Helary
  • J. P. Lumineau
  • A. Y. Le Cloarec
  • E. Orio
  • J. G. Barbin
  • J. Y. Barbin
Original Articles

Summary

The authors present a physico-mathematical model of a human femur, under « monopodal » static constraints, using the finite elements method. Three examples are considered: a normal femur, a femur implanted with a short-stem prosthesis without cement, and a femur implanted with a long-stem prosthesis without cement. The lines of isoconstraints were compared in the three examples, as well as the main constraints (direction and intensity). From the results, the authors suggest that a prosthesis made of titanium is currently best even though its YOUNG's modulus differs from that of the bone. A prosthesis of composite material is possible in the future. While the intensity of the constraints is nearly the same at the level of the epiphysis for the short-stem and long-stem prosthesis it seems that the short-stem prosthesis fitted accurately without cement is the best solution. The introduction of a hip prosthesis modifies the normal curve of the loaded femur by changing the center of this curve.

Key words

Finite elements method Prosthesis of the hip Femur isoconstraints Main constraints 

Modélisation physico-mathématique d'un fémur humain sous contraintes statiques en appui unipodal

Résumé

Les auteurs ont procédé à la modélisation physico-mathématique à l'aide de la méthode des éléments finis d'un fémur humain sous contraintes statiques en appui unipodal.

Trois cas de figures ont été retenus: un fémur isolé, un fémur implanté avec une prothèse sans ciment à queue courte, un fémur implanté avec une prothèse sans ciment à queue longue. Les lignes d'isocontraintes ont été comparées dans les trois cas, de mÊme que les contraintes principales en direction et en intensité.

Les auteurs estiment, au vu des résultats, que les prothèses en titane, malgré l'écart entre le module de YOUNG de ces dernières et celui supposé de l'os, sont dans l'état actuel de nos connaissances la meilleure solution en attendant de futures prothèses en un matériau composite qui reste à définir.

Bien que l'intensité des contraintes soit sensiblement identique au niveau de l'épiphyse fémorale proximale dans le cas des prothèses à queue courte et dans celui des prothèses à queue longue, il semble que la meilleure solution soit apportée par des prothèses sans ciment exactement adaptées et munies d'une queue courte.

En effet, l'introduction d'une prothèse de hanche modifie la courbure naturelle du fémur sous chargement en déplaÇant le centre de celle-ci.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Afoke N, Byers PD, Hutton WC (1982) A finite element study of the human hip joint. Engineering in Medicine 11: 17–24Google Scholar
  2. 2.
    Anderson R, Cook SD, Weinstein AM (1982) Interface mechanics of LTI pyrolytre carbon, porous titatium and carbon coated porous titatium implants. 28th Annual Orthopedic reseach Symposium, January, 19–21, 178Google Scholar
  3. 3.
    Andriacchi TP, Galante JO, Belystchko TB, Hampton S, (1976) A stress analysis of the femur in total hip replacement. J Bone Joint Surg 58 A: 618–624Google Scholar
  4. 4.
    Armstrong CG, Gardner DL (1977) Thickness and distribution of human femoral head articular cartilage. Ann Rheum Dis 36: 407–412PubMedGoogle Scholar
  5. 5.
    Bathe KJ, Wilson EL, Peterson FE, Sap IV (1974) A structural Analysis program for static and dynamic response of linear systems. Report no EERC 73-11, Uni. of California, Berkeley CaliforniaGoogle Scholar
  6. 6.
    Blaimont P, Halleux P, Jedwab J (1968) Distribution des contraintes osseuses dans le fémur. Rev Chir Orthop Rép App locomot 54: 303–319Google Scholar
  7. 7.
    Bougois R, Wagner J (1985) Détermination des tensions dans l'arthroplastie de renforcement de la hanche par voie numérique et expérimentale. Acta Orthop Belg 51: 182–189Google Scholar
  8. 8.
    Braune W, Fischer O (1889) Uber den schwerpunkt des merischlichen körpers. Hirzel, LeipzigGoogle Scholar
  9. 9.
    Brockhurst PJ, Svensson NL (1977) Design of total hip prothesis, the femoral stem. Med Progr Technol 5: 73–102Google Scholar
  10. 10.
    Brown TD, Digidia AM (1984) A contact coupled finite element analysis of the natural adult hip. J. Biomechan 17: 437–448CrossRefGoogle Scholar
  11. 11.
    Brown TD, Ferguson AB (1980) Mechanical properties distributions in the cancellous bone of the human proximal femur. Acta Orthop Scand 51: 429–437PubMedGoogle Scholar
  12. 12.
    Brown TD, Graf GE (1978) Material property distribution in the human femoral head. Proc of 24th Annual Orthop Res SocGoogle Scholar
  13. 13.
    Brown TD, Mutschler TA, Ferguson AB (1982) A non linear finite element analysis of some early collapse processes in femoral head osteonecrosis. J Biomech 15: 705–715CrossRefPubMedGoogle Scholar
  14. 14.
    Brown TD, Radin EL, Martin RB, Burr DB (1984) Finite element studies of some juxta articular stress changes due to localized subchondral stiffenuig. J Biomech 17: 11–24CrossRefPubMedGoogle Scholar
  15. 15.
    Brown TD, Shaw DB (1983) “in vitro” contact stress distributions in the natural hip. J Biomech 16: 373–384CrossRefPubMedGoogle Scholar
  16. 16.
    Brown TD, Vrahas MS (1983) The apparent elastic modulous of juxta articular subchondral bone of the femoral head. 9th annual meeting of the Society for biomaterials 12Google Scholar
  17. 17.
    Carter DR, Spengler DM (1978) Mechanical properties of cortical bone. Clin Orthop 135: 192PubMedGoogle Scholar
  18. 18.
    Christel P, Dierothe P, Sedel L (1975) Mesure par stimulation de l'amortissement d'une hanche normale et prothésée. 4e symposium de biomécanique osseuse. CIBO, 21 mai 1976, Acta Orthop Belg 42: 183–193Google Scholar
  19. 19.
    Cook SD, Klamitter JJ, Weinstein AM (1980) The influence of design parameters on calcar stresses following femoral head arthroplasty. J Biomed Mater Res 14: 133CrossRefPubMedGoogle Scholar
  20. 20.
    Crick D, Wagner J, Bougois R, Deho P (1985) Comportement mécanique de l'épiphyse supérieure du fémur resurfacée et incidence des variations anatomiques et des différents types de cupules. Acta Orthop Belg 51: 168–179PubMedGoogle Scholar
  21. 21.
    Crowninshield RD (1978) Use of optimisation techniques to predict muscle forces. J Biomech Eng 100: 88–92Google Scholar
  22. 22.
    Crowninshield RD, Branch AJ (1978) The effect of stem cross sectional shape on load transmission from total hip prothesis. Trans Orthop Res Soc 3: 255Google Scholar
  23. 23.
    Crowninshield RD, Brand RA, Johnston RC, Milnoy JC (1980) An analysis of femoral composent stem design in total hip arthroplasty. J Bone Joint Surg 62 A: 68Google Scholar
  24. 24.
    Crowninshield RD, Johnston RC, Andrews JG (1978) A biomechanical investigation of the human hip. J Biomech 11: 75–85CrossRefPubMedGoogle Scholar
  25. 25.
    Digida A (1983) A contact coupled non linear finite element analysis of the hip joint and porous ingrouth hip prothesis. M.S Thesis, Biomedical engineering program and department of civil engineering, Carnegie, Mellon UniversityGoogle Scholar
  26. 26.
    Evans FG (1957) Stress an strain in bones. CC Thomas, SpringfieldGoogle Scholar
  27. 27.
    Evans FG (1964) Significant difference in the tensile strength of adult human compact bone. Proc. European bone and tooth symposium, Ist The Pergamon Press OxfordGoogle Scholar
  28. 28.
    Ferré JC, Barbin JY, Laude M, Helary JL (1984) A physiomathematical approach to the structure of the mandible. Anat Clin 6: 45–52CrossRefPubMedGoogle Scholar
  29. 29.
    Ferré JC, Barbin JY, Helary JL, Lumineau JP (1984) The mandible, an overhanging mechanically suspended structure. Anat Clin 6: 3–10CrossRefPubMedGoogle Scholar
  30. 30.
    Ferré JC, Legoux R, Helary JL, Lumineau JP, Chevalier C, Orio E, Le Cloarec AY, Barbin JY (1985) Application des techniques de modélisation à l'étude structurale de la mandibule sous contraintes. A.M.T.B. 2e colloque internationale biologie théorique et médecine, Abbaye de Fontrevaud. Anat Clin 7: 183–192CrossRefPubMedGoogle Scholar
  31. 31.
    Ferré JC (1986) Approche biomécanique à l'étude de la structure de la mandibule. Thèse pour le Doctorat d'Etat en Biologie Humaine. Amiens. Nℴ 7Google Scholar
  32. 32.
    Ferré JC (1986) Moyens d'exploration modernes de l'ostéo-architecture mandibulaire (techniques et résultats). Act Odonto. Stomatologiques, 156: 713–734Google Scholar
  33. 33.
    Fischer O (1899) Der gang des menschen. TeufnerGoogle Scholar
  34. 34.
    Gaetner R (1975) Le programme AXSYM — Description et utilisation. Publication interne à l'INSA, LyonGoogle Scholar
  35. 35.
    Gallacher RH (1976). Introduction aux éléments finis. Pluralis, ParisGoogle Scholar
  36. 36.
    Gallacher RH (1976) Finite element analysis. Springer, StuttgartGoogle Scholar
  37. 37.
    Goel VK, Valliapan S, Swensson NL (1978) Stresses in the normal pelvis. Comput Biol Med 8: 91–104CrossRefPubMedGoogle Scholar
  38. 38.
    Hampton SJ, Andriacchi TP, Galante JO (1970) Three dimensional stress analysis in the femoral stress of a total hip prothesis. J Biomech 13: 443–448CrossRefGoogle Scholar
  39. 39.
    Harris LJ, Chao R, Bloch R (1978) A three dimensional finite element analysis of the proximal third of femur. Trans Orthop Res Soc 3: 16Google Scholar
  40. 40.
    Hilton PD, Gifford LN, Lomacky O (1975) Finite element Fracture mechanics analysis of two dimensional and axisymetric elastic and elastic-plastic craked structures. Nacal ship research and development center report nℴ 4493Google Scholar
  41. 41.
    Huiskes R, Chao E (1983) A survey of finite element analysis in orthopedic biomechanics: the first decade. J Biomechanics 16: 385–409CrossRefGoogle Scholar
  42. 42.
    Huiskes R, Janssen JD, Slooff TJ (1981) A detailed comparison of experimental and theoretical stress analysis of a human femur. Mechanical Properties of bone 45: 211–234Google Scholar
  43. 43.
    Johnston RC, Brand RA, Crowninshield RD (1979) Reconstruction of the hip. A mathematical approach to determin optimum geometric relations of hips. J Bone Joint Surg 61 A: 639–652Google Scholar
  44. 44.
    Johnson GR, Dowson D, Wright V (1975) A new approach to the elastic modulus of articular cartilage. Ann Rheum Dis 34: 116–117Google Scholar
  45. 45.
    Lecoeur (in Cartier J) (1950–1952) Thèse pour le Doctorat d'Etat en Médecine, ParisGoogle Scholar
  46. 46.
    Leudemann R, Skinner HB, Cood SD, Weinstein AM (1982) Bone remodelling associated with prothesis attachment. 28th Annual Orthop Research symposium, January, 19–21: 79Google Scholar
  47. 47.
    Lord, Marotte JH, Blanchard P (1980) Valeur de l'assise horizontale et de l'appui diaphysaire dans la répartition des contraintes du fémur prothèsé. Rev Chir Orthop 66: 141–156PubMedGoogle Scholar
  48. 48.
    McNiece GM, Eng P, Amstutz MC (1976) Finite element studies in the hip reconstruction. Proc. 5th Int Conf Biomech Komi PV. University Park Press, Baltimore: 399–405Google Scholar
  49. 49.
    Moretton JC, Claudon B, Craudisy JC, Magnien P (1986) Conception et fabrication assistée par ordinateur d'une prothèse fémorale de hanche. Rev Chir Orthop 72: 89–96PubMedGoogle Scholar
  50. 50.
    Oonishi H (1981) Three dimensional finite element analysis of the pelvis and ceramic acetabulum. Transactions of the 27th Orthopaedis. Research Society ORS, ChicagoGoogle Scholar
  51. 51.
    Oonishi H, Isha H, Hasegawa T (1983) Mechanical analysis of the human pelvis and its application to the artificial hip joint by means of the three dimensional finite element method. J Biomech 16: 427–444CrossRefPubMedGoogle Scholar
  52. 52.
    Oonishi H, Kotani PT, Skikita T, Hamaguchi T (1976) Study on the surface shape and coutours of the femoral head and acetabulum of the human joint. Acta Orthop Belg 42: 153–182PubMedGoogle Scholar
  53. 53.
    Paul JP (1976) Loading on normal hip and knee joints and on joint replacements. Artificial hip and knee joint technology, Springer Verlag, BerlinGoogle Scholar
  54. 54.
    Pauwels F (1976) Gesammelte abhandlungen zur funktionnellen anatomie des Benegungsapparates. Springer Verlag, BerlinGoogle Scholar
  55. 55.
    Pauwels F (1979) Biomécanique de l'appareil locomoteur. Springer Verlag, Berlin, Heidelberg, New YorkGoogle Scholar
  56. 56.
    Pedersen DR, Crowninshield RD, Brand RA, Johnston RC (1982) An axisymetric model of acetabular components in total hip arthroplasty. J Biomech 15: 305–315CrossRefPubMedGoogle Scholar
  57. 57.
    Penrod DD, Davy TD, Singh DP (1974) An optimization approach to tendon force analysis. J Biomech 7: 123–129CrossRefPubMedGoogle Scholar
  58. 58.
    Pekman WM, Brown TD (1983) A finite element analysis of acetabular reconstruction following metastatic bone loss. Biomech Symposium: 43–46, American Society of Mechanicals Engineers, New York.Google Scholar
  59. 59.
    Rab GT (1980) An orthopaedist looks at finite element analysis. Proceedings of the international conference on finite elements in biomechanics: 7–11Google Scholar
  60. 60.
    Reilly DT, Burnstein AM (1981) The elastic and ultimate Properties of compact bone tissue. J Biomech 8: 383–405Google Scholar
  61. 61.
    Rohlmann A, Mossner U, Bergmann G, Kolbel R (1982) Finite element analysis and experimental investigation of stresses in a femur. J Biomed Engin 4: 241–246Google Scholar
  62. 62.
    Rohlmann A, Mossner U, Bergmann G, Kolbel R (1983) Finite element analysis and experimental investigation in a femur with hip endoprothesis. J Biomech 16: 727–742CrossRefPubMedGoogle Scholar
  63. 63.
    Rohrle H, Scholten R, Sollbach W (1978) Analysis of stress distribution on material and artificial hip joints using finite element method. S Afr Mech Engr 28: 220–225Google Scholar
  64. 64.
    Rumelhart C (1980) Capteur de pression à diaphragme et jauges in situ. Application à l'étude des PTH Rev FranÇ Méca 78: 53–65Google Scholar
  65. 65.
    Rumelhart C, Bahuaud J, Contet JJ (1975) Etude de la répartition des pressions articulaires dans l'interface d'une prothèse artificielle de hanche type Mc Kee Farrar. Rapport ATP, CNRS Physiol Pathol tissu calc, 5302Google Scholar
  66. 66.
    Rumelhart C, Contet JJ, Bahuaud J, Moyen B (1980) The use of a hip joint simulator for pressure measurement at the interface of total hip prothesis. Evaluation of biomatherials. John Wiley and sons Ltd: 157–165Google Scholar
  67. 67.
    Rumelhart C, Martineau G, Bahuaud J (1974) Etude de la répartition des pressions à la surface d'un modèle de PTH type Mc Kee Farrar. Proceeding of the fifth international conference on experimental stress analysis, sup 3: 70–79Google Scholar
  68. 68.
    Rybicki EF, Simonen FA, Weis EB Jr (1972) On the mathematical analysis of stress in the human femur. J Biomech 5: 203–215CrossRefPubMedGoogle Scholar
  69. 69.
    Scholten R, Rohrle H, Sollbach W (1978) Analysis of stress distribution in natural and artificial hip joint using the finite element method. S Afr Mech Engr 28: 220–225Google Scholar
  70. 70.
    Taar R, Lewis J, Ghassemi F, Sarmiento A, Clarke I, Weingarten V (1980) Anatomic three dimensional finite element model of the proximal femur with total hip prothesis. International conference proceedings, Finite Element in Biomechanics (Edited by Simon B.R) vol 2, 511–525Google Scholar
  71. 71.
    Villiapan S, Svensson NL, Wood RD (1977) Three dimensional stress analysis of the human femur. Com Biol Med 7: 253–264CrossRefGoogle Scholar
  72. 72.
    Zienkiewicz OC (1971) The finite element method in engineering science. Mc Graw Hill, New YorkGoogle Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • J. C. Ferré
    • 1
    • 2
  • R. Legoux
    • 2
    • 3
  • F. Marquet
    • 3
  • C. Chevalier
    • 2
  • J. L. Helary
    • 2
  • J. P. Lumineau
    • 2
  • A. Y. Le Cloarec
    • 2
  • E. Orio
    • 2
  • J. G. Barbin
  • J. Y. Barbin
    • 2
  1. 1.UER de MédecineLaboratoire d'AnatomieNantes CedexFrance
  2. 2.CNERB (Centre Nantais d'Etudes et de Recherches Biophysiques)NantesFrance
  3. 3.Alsthom - ACBNantes CedexFrance

Personalised recommendations