Zeitschrift für Physik B Condensed Matter

, Volume 32, Issue 4, pp 405–411 | Cite as

Spatial structure and stability based on random walks

  • Hiroaki Hara
Article

Abstract

A general expression for a recursion formula which describes a random walk with coupled modes is given. In this system, the random walker is specified by the jumping probabilities P+ and P which depend on the modes. The transition probability between the modes is expressed by a jumping probabilityR(ij) (orrij). With the aid of this recursion formula, spatial structures of the steady state of a coupled random walk are studied. By introducing a Liapunov function and entropy, it is shown that the stability condition for the present system can be expressed as the principle of the extremum entropy production.

Keywords

General Expression Spectroscopy Entropy Neural Network Steady State 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kawasaki, K.: Phase Transitions and Critical Phenomena, Vol. 2, p. 443. Domb, C., Green, M.S. (eds.). New York: Academic Press 1973 Edwards, S.F., Anderson, P.W.: J. Phys. F5, 965 (1975) Edwards, S.F.: J. Phys. F6, 1923, 1927 (1976)Google Scholar
  2. 2.
    Graham, R., Haken, H.: Z. Physik243, 289 (1971); Z. Physik245, 141 (1971)CrossRefGoogle Scholar
  3. 3.
    Glandsdorff, P., Prigogine, I.: Physica30, 356 (1964)Google Scholar
  4. 4.
    Schlögl, F.: Ann. Phys.45, 155 (1967); Z. Physik243, 303 (1971),244, 199 (1971)CrossRefGoogle Scholar
  5. 5.
    Ma, S.K.: Modern Theory of Critical Phenomena. New York: Benjamin 1976Google Scholar
  6. 6.
    Turing, A.M.: Phil. Trans. R. Soc. London B237, 37 (1952)Google Scholar
  7. 7.
    Kerner, E.H.: Bull. Math. Biophys.19, 121 (1957) Edelstein, B.B.: J. Theor. Biol.26, 227 (1970)Google Scholar
  8. 8.
    Segel, L.A.: J. Theor. Biol.37, 545 (1972) Jorme, J., Carmri, S.: Math. Biosci37, 51 (1977)CrossRefGoogle Scholar
  9. 9.
    Hara, H., Watanabe, R.: Read at the meeting of Physical Society of Japan, Yamagata, 1976Google Scholar
  10. 10.
    Hara, H.: Prog. Theor. Phys.60, No. 1 (1978)Google Scholar
  11. 11.
    Hara, H.: (submitted to J. Stat. Phys.)Google Scholar
  12. 12.
    Hara, H., Fujita, S.: Z. Physik B32, 99 (1978)CrossRefGoogle Scholar
  13. 13.
    Bogoliubov, N.N., Mitropolsky, Y.A.: Asymptotic Methods in the Theory of Non-linear Oscillations (English edition, Dehli, Hindustan Pub. 1961)Google Scholar
  14. 14.
    Knight, B.W., Peterson, G.A.: Phys. Rev.147, 617 (1966); Phys. Rev.155, 393 (1967)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Hiroaki Hara
    • 1
  1. 1.Department of Physics and AstronomyState University of New York at BuffaloAmherstUSA

Personalised recommendations