Advertisement

Acta Mathematica Sinica

, Volume 6, Issue 1, pp 65–71 | Cite as

On the limit points of the Kaplan-Meier estimator

  • Zheng Zukang
Article
  • 27 Downloads

Abstract

In this paper the limit points of the Kaplan-Meier estimator is discussed. We use the method of strong approximation to get the unit ball of the reproducing kernel Hilbert space.

Keywords

Hilbert Space Unit Ball Limit Point Reproduce Kernel Hilbert Space Strong Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Kaplan, E. L. and Meier, P., Nonparametric estimation from incomplete observations,JASA,53 (1958), 457–481.Google Scholar
  2. [2]
    Földes, A. and Rejtő, L., A LIL type result for the product limit estimator,ZW,56 (1981), 75–86.Google Scholar
  3. [3]
    Zheng Zukang, A note on the LIL type result for the product limit estimator,Acta Mathematica Sinica, New Series,2 (1986), 144–151.Google Scholar
  4. [4]
    Burke, M. D., Csörgő, S. and Horváth, L., Strong approximations of some biometric estimates under random censorship,ZW,56 (1981), 87–112.Google Scholar
  5. [5]
    Lai, T. L., Reproducing kernel Hilbert spaces and the law of the iterated logarithm for Gaussian processes.ZW,29 (1974), 7–19.Google Scholar
  6. [6]
    Breslow, N. and Crowley, J., A large sample study of the life table and product limit estimates under random censorship,Ann. Statist.,2 (1974), 437–453.Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Zheng Zukang
    • 1
  1. 1.Department of Statistics and Operations ResearchFudan UniversityPeople's Republic of China

Personalised recommendations