Skip to main content
Log in

Geometric aspects of quantum spin states

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

A number of interesting features of the ground states of quantum spin chains are analyzed with the help of a functional integral representation of the system's equilibrium states. Methods of general applicability are introduced in the context of the SU(2S+1)-invariant quantum spin-S chains with the interaction −P (o), whereP (o) is the projection onto the singlet state of a pair of nearest neighbor spins. The phenomena discussed here include: the absence of Néel order, the possibility of dimerization, conditions for the existence of a spectral gap, and a dichotomy analogous to one found by Affleck and Lieb, stating that the systems exhibit either slow decay of correlations or translation symmetry breaking. Our representation elucidates the relation, evidence for which was found earlier, of the −P (o) spin-S systems with the Potts and the Fortuin-Kasteleyn random-cluster models in one more dimension. The method reveals the geometric aspects of the listed phenomena, and gives a precise sense to a picture of the ground state in which the spins are grouped into random clusters of zero total spin. E.g., within such structure the dichotomy is implied by a topological argument, and the alternatives correspond to whether, or not, the clusters are of finite mean length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aizenman, M., Chayes, J.T., Chayes, L., Newman, C.M.: Discontinuity of the Magnetization in One-Dimensional 1/|x−y|2 Ising and Potts Models, J. Stat. Phys.50, 1–40 (1988)

    Article  Google Scholar 

  2. aizenman, M., Klein, A., Newman, C.: Percolation methods for disordered quantum Ising models. Preprint

  3. Aizenman, M., Lieb, E.H.: Magnetic Properties of Some Itinerant-Electron Systems atT>0. Phys. Rev. Lett.65, 1470–1473 (1990)

    Article  Google Scholar 

  4. Aizenman, M., Martin, Ph.A.: Structure of Gibbs States of One-Dimensional Coulomb Systems. Commun. Math. Phys.78, 99–116 (1980)

    Article  Google Scholar 

  5. Aizenman, M., Nachtergaele, B.: Geometric aspects of quantum spin systems II. In preparation

  6. Affleck, I.: Exact results on the dimerization transition in SU(n) antiferromagnetic chains. J. Phys. C: Condens. Matter2, 405–415 (1990)

    Article  Google Scholar 

  7. Affleck, I., Lieb, E.H.: A proof of part of Haldane's conjecture on quantum spin chains. Lett. Math. Phys.12, 57–69 (1986)

    Article  Google Scholar 

  8. Baxter, R.J.: Exactly Solvable Models in Statistical Mechanics. London: Academic Press, 1982

    Google Scholar 

  9. Baxter, R.J.: Magnetisation discontinuity of the two-dimensional Potts model. J. Phys. A. Math. Gen.15, 3329–3340 (1982)

    Article  Google Scholar 

  10. Barber, M.N., Batchelor, M.T.: Spectrum of the biquadratic spin-1 antiferromagnetic chain. Phys. Rev.B40, 4621–4626 (1989)

    Article  Google Scholar 

  11. Batchelor, M.T., Barber, M.: Spin-s quantum chains and Temperley-Lieb algebras. J. Phys. A: Math. Gen.23, L15-L21 (1990)

    Article  Google Scholar 

  12. Burton, R.M., Keane, M.: Density and uniqueness in percolation. Commun. Math. Phys.121, 501–505 (1989)

    Article  Google Scholar 

  13. Coniglio, A., Nappi, C.R., Peruggi, F., Russo, L.: Percolation and Phase Transitions in the Ising Model. Commun. Math. Phys.51, 315–323 (1976)

    Article  Google Scholar 

  14. Conlon, J.G., Solovej, J-Ph.: Random Walk Representations of the Heisenberg Model. J. Stat. Phys.64, 251–270 (1991)

    Article  Google Scholar 

  15. Cross, M.C., Fisher, D.S.: A new theory of the spin-Peierls transition with special relevance to the experiments on TTFCuBDT. Phys. Rev.B19, 402–419 (1979)

    Article  Google Scholar 

  16. Dyson, F.J., Lieb, E.H., Simon, B.: Phase transitions in quantum spin systems with isotropic and non-isotropic interactions. J. Stat. Phys.18, 335–383 (1978)

    Article  Google Scholar 

  17. Fannes, M., Nachtergaele, B., Werner, R.F.: Finitely correlated states for quantum spin chains. Commun. Math. Phys.144, 443–490 (1992)

    Article  Google Scholar 

  18. Fortuin, C.M.: On the random cluster model II and III. Physica58, 393–418 (1972); Physica59, 545–570 (1972)

    Article  Google Scholar 

  19. Fortuin, C.M., Kasteleyn, P.W.: On the random cluster model I. Physica57, 536–564 (1972)

    Article  Google Scholar 

  20. Fortuin, C.M., Kasteleyn, P.W., Ginibre, L.: Correlation inequalities on some partially ordered sets. Commun. Math Phys.22, 89–103 (1971)

    Article  Google Scholar 

  21. Furstenberg, H.: Recurrence in Ergodic Theory and Combinatorial Number Theory. Princeton: Princeton University Press, 1981

    Google Scholar 

  22. Gandolfi, A., Keane, M., Russo, L.: On the uniqueness of the infinite occupied cluster in dependent two-dimensional site percolation. Ann. Prob.16, 1147–1157 (1988)

    Google Scholar 

  23. Georgii, H.-O.: Gibbs measures and phase transitions. Berlin, New York: W. de Gruytter, 1988

    Google Scholar 

  24. Ginibre, J.: Reduced density matrices for the anisotropic Heisenberg model. Commun. Math. Phys.10, 140–154 (1968)

    Article  Google Scholar 

  25. Girvin, S.M., Arovas, D.P.: Hidden topological order in integer quantum spin chains. Physica ScriptaT27, 156–159 (1989)

    Google Scholar 

  26. Goderis, D., Maes, C.: Constructing quantum dissipations and their reversible states from classical interacting spin systems. Ann. Inst. H. Poincaré55, 805–828 (1991)

    Google Scholar 

  27. Hagiwara, M., Katsumata, K.: Observation ofS=1/2 degrees of freedom in an undopedS=1 linear chain Heisenberg antiferromagnet. J. Phys. Soc. Japan.61, 1481–1484 (1992)

    Article  Google Scholar 

  28. Hagiwara, M., Katsumata, K., Affleck, I., Halperin, B.I., Renard, J.P.: Hyperfine structure due to theS=1/2 degrees of freedom in anS=1 linear chain antiferromagnet. J. Mag. Mag. Materials104–107, 839–840 (1992)

    Article  Google Scholar 

  29. Hagiwara, M., Katsumata, K., Renard, J.P., Affleck, I., Halperin, B.I.: Observation ofS=1/2 degrees of freedom in anS=1 linear chain Heisenberg antiferromagnet. Phys. Rev. Lett.65, 3181–3184 (1990)

    Article  Google Scholar 

  30. Haldane, F.D.M.: Continuum dynamics of the 1-D Heisenberg antiferromagnet: Identification with the O(3) nonlinear sigma model. Phys. Lett.93A, 464–468 (1983)

    Google Scholar 

  31. Hintermann, A., Kunz, H., Wu, F.Y.: Exact Results for the Potts Model in Two Dimensions. J. Stat. Phys.19, 623–632 (1978)

    Article  Google Scholar 

  32. Holley, R.: Remarks on the FKG Inequalities. Commun. Math. Phys.36, 277–321 (1974)

    Article  Google Scholar 

  33. Kennedy, T.: Long range order in the anisotropic quantum ferromagnetic Heisenberg model. Commun. Math. Phys.100, 447–462 (1985)

    Article  Google Scholar 

  34. Kennedy, T., Lieb, E.H.: Proof of the Peierls Instability in One Dimension. Phys. Rev. Lett.59, 1309–1312 (1987)

    Article  Google Scholar 

  35. Kennedy, T., Lieb, E.H., Shastri, B.S.: Existence of Néel order in some spin 1/2 Heisenberg antiferromagnets. J. Stat. Phys.53, 1019–1030 (1988)

    Article  Google Scholar 

  36. Kennedy, T., Tasaki, H.: Hidden Symmetry Breaking and the Haldane Phase inS=1 Quantum Spin Chains. Commun. Math. Phys.147, 431–484 (1992)

    Article  Google Scholar 

  37. Kirkwood, J.R., Thomas, L.E.: Expansions and Phase Transitions for the Ground State of Quantum Ising Lattice Systems. Commun. Math. Phys.88, 569–580 (1983)

    Article  Google Scholar 

  38. Klümper, A.: New Results forq-state Vertex Models and the Pure Biquadratic Spin-1 Hamiltonian. Europhys. Lett.9, 815–820 (1989)

    Google Scholar 

  39. Klümper, A.: The spectra ofq-state vertex models and related antiferromagnetic quantum spin chains. J. Phys. A: Math. Gen. 23, 809–823 (1990)

    Article  Google Scholar 

  40. Kotecký, R., Laanait, L., Messager, A., Ruiz, J.: Theq-state Potts Model in the Standard Pirogov-Sinai Theory: Surface Tensions and Wilson Loops. J. Stat. Phys.58, 199–248 (1990)

    Article  Google Scholar 

  41. Kotecký, R., Shlosman, S.B.: First-Order Phase Transitions in Large Entropy Lattice Models. Commun. Math. Phys.83, 493–515 (1982)

    Article  Google Scholar 

  42. Lieb, E.H., Mattis, D.C.: Ordering Energy Levels of Interacting Spin Systems. J. Math. Phys.3, 749–751 (1962)

    Article  Google Scholar 

  43. Lieb, E., Schulz, T., Mattis, D.: Two soluble models of an antiferromagnetic chain. Ann. Phys. (NY)16, 407–466 (1961)

    Article  Google Scholar 

  44. Matsui, T.: Uniqueness of the Translationally Invariant Ground State in Quantum Spin Systems. Commun. Math. Phys.126, 453–467 (1990)

    Article  Google Scholar 

  45. Matsui, T.: On Ground State Degeneracy of ℤ2-Symmetric Quantum Spin Models. Pub. RIMS (Kyoto)27, 657–679 (1991)

    Google Scholar 

  46. Newman, C.M.: A general central limit theorem for FKG systems. Commun. Math. Phys.91, 75–80 (1983)

    Article  Google Scholar 

  47. den Nijs, M., Rommelse, K.: Preroughening transitions in crystal surfaces and valence bond phases in quantum spin systems. Phys. Rev.B40, 4709–4734 (1989)

    Article  Google Scholar 

  48. Pitaevskii, L., Stringari, S.: Uncertainty principle, quantum fluctuations and broken symmetries. J. Low Temp. Phys85, 377–388 (1991)

    Article  Google Scholar 

  49. Shastri, B.S.: Bounds for correlation functions of the Heisenberg antiferromagnet. J. Phys. A: Math. Gen.25, L249–253 (1992)

    Article  Google Scholar 

  50. Sutherland, B.: Model for a multicomponent quantum system. Phys. Rev.B12, 3795–3805 (1975)

    Article  Google Scholar 

  51. Sütö, A.: Percolation transition in the Bose gas. To appear in J. Phys. A: Math. Gen.

  52. Thomas, L.E.: Quantum Heisenberg ferromagnets and stochastic exclusion processes. J. Math. Phys.21, 1921–1924 (1980)

    Article  Google Scholar 

  53. Tóth, B.: Improved lower bound on the thermodynamic pressure of the spin 1/2 Heisenberg ferromagnet. Lett. Math. Phys.28, 75–84 (1993)

    Article  Google Scholar 

  54. Wu, F.Y.: The Potts model. Rev. Mod. Phys.54, 235–268 (1982)

    Article  Google Scholar 

  55. Affleck, I.: The large-N limit of quantum spin chains. Phys. Rev. Lett.54, 966–969 (1985) [Reference added in proof]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by D.C. Brydges

Work supported in part by NSF Grant PHY-9214654.

Also in the Mathematics Department.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aizenman, M., Nachtergaele, B. Geometric aspects of quantum spin states. Commun.Math. Phys. 164, 17–63 (1994). https://doi.org/10.1007/BF02108805

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02108805

Keywords

Navigation