Communications in Mathematical Physics

, Volume 128, Issue 2, pp 393–409 | Cite as

Quantum evolution and classical flow in complex phase space

  • S. Graffi
  • A. Parmeggiani
Article

Abstract

For a class of holomorphic perturbations of the harmonic oscillator inn degrees of freedom a local solution of the time-dependent Schrödinger equation in the Bargmann representation is constructed which pointwise propagates, to leading order in ħ, along the classical trajectories in complex phase space.

Keywords

Neural Network Statistical Physic Phase Space Complex System Nonlinear Dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A] Arnold, V.I.: Ordinary differential equations. Moscow: MIR Press 1973Google Scholar
  2. [Ba] Bargmann, V.: On a Hilbert space of analytic functions and an associated integral transform. Commun. Pure Appl. Math.14, 187–214 (1961)Google Scholar
  3. [Ch] Chazarain, J.: Spectre d'un hamiltonien quantique et mécanique classique. Commun. Part. Diff. Eqs.5, 595–644 (1980)Google Scholar
  4. [GeSj] Gérard, C., Sjöstrand, J.: Resonances en limite semiclassique et exposants de Lyapunov. Prépublications de l'Université de Paris-Sud, Orsay, 1987Google Scholar
  5. [GrPa] Graffi, S., Paul, T.: The Schrödinger equation and canonical perturbation theory. Commun. Math. Phys.108, 71–87 (1987)CrossRefGoogle Scholar
  6. [GrSj] Grigis, A., Sjöstrand, J.: Front d'onde analytique et sommes de carrés de champs de vecteurs. Duke Math. J.52, 35–51 (1985)CrossRefGoogle Scholar
  7. [HeRo1] Helffer, B., Robert, D.: Comportement semi-classique du spectre des Hamiltonien quantiques elliptiques. Ann. Inst. Fourier31, 169–223 (1981)Google Scholar
  8. [HeRo2] Helffer, B., Robert, D.: Asymptotique des niveaux d'energie pour des hamiltoniens à un degré de liberté. Duke Math. J.49, 853–868 (1982)CrossRefGoogle Scholar
  9. [LaSj] Lascar, B., Sjöstrand, J.: Equation de Schrödinger et propagation pour de O.D.P. à characteristiques reelles de multeplicité variable. II. Commun. Part. Diff. Eq.10, 467–523 (1985)Google Scholar
  10. [Le] Lebeau, G.: Deuxième microlocalisation sur les sous-varietés isotropes. Ann. Inst. Fourier (Grenoble)35, 145–216 (1985)Google Scholar
  11. [N] Narasimhan, R.: Analysis on real and complex manifolds. Amsterdam: North-Holland 1968Google Scholar
  12. [RoPe] Robert, D., Petkov, V.: Asymptotique semiclassique du spectre d'Hamiltoniens quantiques et trajectoires classiques périodiques. Commun. Part. Diff. Eq.10, 365–390 (1985)Google Scholar
  13. [RoTa] Robert, D., Tamura, H.: Semiclassical bounds for the resolvents of Schrödinger operators and asymptotics of the scattering phase. Commun. Part. Diff. Eq.9, 1017–1055 (1984)Google Scholar
  14. [Sj] Sjöstrand, J.: Singularités analytiques microlocales. Asterisque95 (1982)Google Scholar
  15. [Ta] Tamura, H.: Asymptotic formulas with sharp remainder estimates for the bound states of Schrödinger operators. J. Analyse Math.41, 85–108 (1982)Google Scholar
  16. [Ya1] Yajima, K.: The quasi-classical limit of quantum scattering theory. I. Commun. Math. Phys.69, 101–129 (1979)CrossRefGoogle Scholar
  17. [Ya2] Yajima, K.: The quasi-classical limit of quantum scattering theory. II. Duke Math. J.48, 1–22 (1981)CrossRefGoogle Scholar
  18. [Ze] Zelditch, S.: Reconstruction of singularities for solutions of Schrödinger's equation. Commun. Math. Phys.90, 1–26 (1983)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • S. Graffi
    • 1
  • A. Parmeggiani
    • 2
  1. 1.Dipartimento di MatematicaUniversità di BolognaBolognaItaly
  2. 2.Department of MathematicsPrinceton UniversityPrincetonUSA

Personalised recommendations