Skip to main content

Recovering information borne by quanta that crossed the black hole event horizon

Abstract

In this essay we discuss how the statistics of quantum particles, namely, stimulated emission for bosons and the exclusion principle for fermions, provide mechanisms for correlating the radiations impinging and emanating from a black hole. In either case, the information originally borne by the incoming radiation that is partially transferred to the outging radiation is estimated within the framework of communication theory.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Hawking, S. W. (1976).Phys Rev. D 14, 2460.

    Google Scholar 

  2. 2.

    Bekenstein, J. D., and Meisels, A. (1977).Phys. Rev. D 15, 2775.

    Google Scholar 

  3. 3.

    Panangaden, P., and Wald, R. M. (1977).Phys. Rev. D 16, 929.

    Google Scholar 

  4. 4.

    Bekenstein, J. D. (1981). InJerusalem Einstein Centennial, Y. Ne'eman, ed. (Addison Wesley, Reading, Mass.).

    Google Scholar 

  5. 5.

    Gasperini, M. (1990).Prog. Theor. Phys. 84, 899.

    Google Scholar 

  6. 6.

    Bekenstein, J. D. and Schiffer, M. (1990).Int. J. Mod. Phys. C1, 355.

    Google Scholar 

  7. 7.

    Yamamoto, Y., and Haus, H. A. (1986).Rev. Mod. Phys. 58, 1001.

    Google Scholar 

  8. 8.

    Shannon, C. E. (1948).Bell Syst. Tech. J. 27, 379.

    Google Scholar 

  9. 9.

    Shannon, C. E., and Weaver, W. (1949).The Mathematical Theory of Communication (University of Illinois Press, Urbana, Ill.).

    Google Scholar 

  10. 10.

    Schiffer, M. (1993).Gen. Rel. Grav. 25, 197.

    Google Scholar 

  11. 11.

    Schiffer, M. (1993).Phys. Rev. D 48, 1652.

    Google Scholar 

  12. 12.

    Müller, R., and Lousto, C. (1993). “Information recovered from black hole radiation by stimulated emission”. Preprint KONS-RGKU-93-10, gr-qc: 930700.

  13. 13.

    Page, D. N. (1994). InProc. 5th Canadian Conference on General Relativity and Relativistic Astrophysics, R. B. Mann and R. G. McLenaghan, eds. (World Scientific, Singapore).

    Google Scholar 

  14. 14.

    Page, D. N. (1976).Phys. Rev. D 13, 198.

    Google Scholar 

  15. 15.

    't Hooft, G. (1985).Nucl. Phys. B 256, 727.

    Google Scholar 

  16. 16.

    't Hooft, G. (1990).Nucl. Phys. B 335, 138.

    Google Scholar 

  17. 17.

    Bekenstein, J. D. (1993).Phys. Rev. Lett. 70, 3680.

    Google Scholar 

  18. 18.

    Kiefer, C., Müller, R., and Singh, T. P. (1993). “ Quantum Gravity and Nonunitarity in Black Hole Evaporation”. Preprint ZU-TH 25/93, gr-qc: 9308024.

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schiffer, M. Recovering information borne by quanta that crossed the black hole event horizon. Gen Relat Gravit 26, 469–476 (1994). https://doi.org/10.1007/BF02108049

Download citation

Keywords

  • Radiation
  • Black Hole
  • Differential Geometry
  • Event Horizon
  • Communication Theory