Skip to main content
Log in

Permeability of bimolecular membranes made from lipid extracts of human red cell ghosts to sugars

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Spherical lipid bimolecular membranes of a large surface area separating two aqueous solutions were formed from the total lipid extracts of human red cell ghosts and from their individual lipid components. The isotopic permeabilities of these membranes to biologically important sugars and to a related polyol were measured. The observedd-glucose permeabilities of the bimolecular membranes of the total lipid, phosphatidyl choline, phosphatidyl ethanolamine, sphingomyelin, and cholesterol were 2.35, 2.51, 2.23, 1.35, and 0.62×10−10 cm/sec, respectively. These permeabilities are about four to five orders of magnitude lower than that of the intact red cell membrane. The permeabilities of the bimolecular membrane made from an identical extract of the total lipid to different sugars varied: the values ford-glucose,d-mannose,d-ribose,d-fructose, 2-deoxy-d-glucose, 3-0-methyl-d-glucose, andd-mannitol were 2.3, 2.6, 8.9, 0.38, 16.1, 11.2, and 0.44×10−10 cm/sec, respectively. The pattern of the difference is neither parallel with nor as extensive as that observed with the intact red cell membrane. The observed permeabilities of the lipid membranes, however, agree qualitatively with what is predicted by an analysis of non-specific movements of nonelectrolytes across the cell membranes. The failure of the membrane lipids to reproduce the carrier function in a structure most closely approximating that of living membranes strongly suggests that some membrane components other than lipids are required for this function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andreoli, T. E., Tieffenberg, M., Tosteson, D. C. 1967. The effect of valinomycin on the ionic permeability of thin lipid membranes.J. Gen. Physiol. 50: 2527.

    Google Scholar 

  • Bartlett, G. R. 1959. Phosphorus assay in column chromatography.J. Biol. Chem. 234: 446.

    Google Scholar 

  • Bean, R. C., Shepherd, W. C., Chen, H. 1968. Permeability of lipid bilayer membranes to organic solutes.J. Gen. Physiol. 52: 495.

    Google Scholar 

  • Bray, G. A. 1960. A simple effective liquid scintillator for counting aqueous solutions in a liquid scintillation counter.Anal. Biochem. 1: 279.

    Google Scholar 

  • Britton, H. G. 1964. Permeability of the human red cell to labelled glucose.J. Physiol. 170: 1.

    Google Scholar 

  • Cass, A., Finkelstein, A. 1967. Water permeability of thin lipid membranes.J. Gen. Physiol. 50: 1765.

    Google Scholar 

  • Davson, H., Danielli, J. F. 1952. The Permeability of Natural Membranes. University Press, Oxford and New York.

    Google Scholar 

  • Fox, C. F., Kennedy, E. P. 1965. Specific labelling and partial purification of theM protein, a component of the β-galactoside transport system ofEscherichia coli.Proc. Nat. Acad. Sci. 54: 891.

    Google Scholar 

  • Jain, M. D., Strickholm, A., Cordes, E. H. 1969. Reconstitution of an ATP-mediated active transport system across black lipid membranes.Nature 222: 871.

    Google Scholar 

  • Jung, C. Y. 1971. Glucose transport activities in isolated membranes of human erythrocytes. II. General characteristics of the carrier activities.Biochim. Biophys. Acta (in press).

  • — Chaney, J. E., LeFevre, P. G. 1968. Enhanced migration of glucose from water into chloroform in presence of phospholipids.Arch. Biochem. Biophys. 126: 664.

    Google Scholar 

  • Jung, C. Y., Snell, F. M. 1968. Unidirectional sugar flux across black membranes made from human erythrocyte ghost lipid extracts and the effect of addition of some proteins.Fed. Proc. 27: 286.

    Google Scholar 

  • Kaback, H. R. 1968. The role of the phosphoenolpyruvate-phosphotransferase system in the transport of sugars by isolated membrane preparations ofEscherichia coli.J. Biol. Chem. 243: 3711.

    Google Scholar 

  • Lang, C. A. 1958. Simple microdetermination of Kjeldahl nitrogen in biological materials.Anal. Chem. 30: 1692.

    Google Scholar 

  • LeFevre, P. G. 1961. Sugar transport in the red blood cell: Structure-activity relationships in substrates and antagonists.Pharmacol. Rev. 13: 39.

    Google Scholar 

  • — 1962. Rate and affinity in human red blood sugar transport.Amer. J. Physiol..203: 286.

    Google Scholar 

  • — Jung, C. Y., Chaney, J. E. 1968. Glucose transfer by red cell membrane phospholipids in H2O/CHCl3/H2O three-layer systems.Arch. Biochem. Biophys. 126: 677.

    Google Scholar 

  • — Marshall, J. K. 1958. Conformational specificity in a biological sugar transport system.Amer. J. Physiol. 194: 333.

    Google Scholar 

  • — McGinniss, G. F. 1960. Tracer exchange vs. net uptake of glucose through human red cell surface; new evidence for carrier-mediated diffusion.J. Gen. Physiol. 44: 87.

    Google Scholar 

  • Mueller, P., Rudin, D. O. 1963. Induced excitability in reconstituted cell membrane structure.J. Theoret. Biol. 4: 268.

    Google Scholar 

  • ——, Tien, H. T., Wescott, W. C. 1962. Reconstitution of excitable cell membrane structurein vitro.Circulation 26: 1167.

    Google Scholar 

  • Pagano, P., Thompson, T. E. 1967. Spherical lipid bilayer membranes.Biochim. Biophys. Acta 144: 666.

    Google Scholar 

  • Pardee, A. B. 1966. Purification and properties of a sulfate-binding protein fromSalmonella typhimurium.J. Biol. Chem. 241: 5886.

    Google Scholar 

  • Reeves, R. E. 1950. The shape of pyranoside rings.J. Amer. Chem. Soc. 72: 1499.

    Google Scholar 

  • Smith, I. 1960. Sugars.In: Chromatographic and Electrophoretic Techniques Vol. 1. I. Smith, editor, p. 246. William Heinemann Books Ltd., London.

    Google Scholar 

  • Stein, W. D., 1967. The Movements of Molecules Across Cell Membranes. p. 295. Academic Press, New York.

    Google Scholar 

  • Tien, H. T. 1967. Black lipid membranes in aqueous media: Interfacial free energy measurements and effect of surfactants on film formation and stability.J. Phys. Chem. 11: 3395.

    Google Scholar 

  • — Diana, A. L. 1968. Bimolecular lipid membranes: A review and a summary of some recent studies.Chem. Phys. Lipids 2: 55.

    Google Scholar 

  • Ways, P., Hanahan, D. J. 1964. Characterization and quantification of red cell lipids in normal man.Lipid Res. 5: 318.

    Google Scholar 

  • Whittam, R. 1964. Transport and Diffusion in Red Blood Cells. p. 2. Springer-Verlag, New York.

    Google Scholar 

  • Wilbrandt, W., Rosenberg, T. 1961. The concept of carrier transport and its corollaries in pharmacology.Pharmacol. Rev. 13: 109.

    Google Scholar 

  • Wood, R. E., Worth, Jr., F. P., Morgan, H. E. 1968. Glucose permeability of lipid bilayer membranes.Biochim. Biophys. Acta 163: 171.

    Google Scholar 

  • Zlatkis, A., Zak, B., Boyle, A. J. 1953. A new method for the direct determination of serum cholesterol.J. Lab. Clin. Med. 41: 486.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, C.Y. Permeability of bimolecular membranes made from lipid extracts of human red cell ghosts to sugars. J. Membrain Biol. 5, 200–214 (1971). https://doi.org/10.1007/BF02107724

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02107724

Keywords

Navigation