The Journal of Membrane Biology

, Volume 5, Issue 2, pp 169–184 | Cite as

Lipid pattern and Na+−K+-dependent adenosine triphosphatase activity in the salt gland of duck before and after adaptation to hypertonic saline

  • Karl-Anders Karlsson
  • Bo E. Samuelsson
  • Göran O. Steen


Ducks (Anas platyrhynchos) were fed hypertonic saline for eight days, resulting in an activation and hypertrophy of the salt gland. The Na+−K+-dependent adenosine triphosphatase, an enzyme generally assumed to be part of the active Na transport system, increased its specific activity by about 200% during this activation. Sulfatides, the major glycolipids of the salt gland, increased their concentration to the same extent. Cholesterol, cerebrosides, and six phospholipid classes showed an increase of 20–80%.


Lipid Cholesterol Adenosine Human Physiology Transport System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abramson, M. B., Katzman, R., Curci, R., Wilson, C. E. 1967. The reactions of sulfatide with metallic cations.Biochemistry 6:295.Google Scholar
  2. 2.
    ——, Gregor, H. P. 1964. Aqueous dispersions of phosphatidylserine. Ionic properties.J. Biol. Chem. 239:70.Google Scholar
  3. 3.
    ———, Curci, R. 1966. The reactions of cations with aqueous dispersions of phosphatidic acid. Determination of stability constants.Biochemistry 5:2207.Google Scholar
  4. 4.
    Atkinsson, A., Hunt, S., Lowe, A. G. 1968. Manganese activation of a (Na+K+)-dependent ATPase in pig brain microsomes.Biochim. Biophys. Acta 167:469.Google Scholar
  5. 5.
    Awasthi, Y. C., Chuang, T. F., Keenan, T. W., Crane, F. L. 1970. Association of cardiolipin and cytochrome oxidase.Biochem. Biophys. Res. Commun. 39:822.Google Scholar
  6. 6.
    Bartlett, G. R. 1959. Phosphorus assay in column chromatography.J. Biol. Chem. 234:466.Google Scholar
  7. 7.
    Bonting, S. L., Caravaggio, L. L., Canady, M. R., Hawkins, N. M. 1964. Studies on sodium-potassium-activated adenosine triphosphatase. XI. The salt gland of the herring gull.Arch. Biochem. Biophys. 106:49.Google Scholar
  8. 8.
    —, Simon, K. A., Hawkins, N. M. 1961. Studies on sodium-potassium-activated adenosine triphosphatase 1. Quantitative distribution in several tissues of the cat.Arch. Biochem. Biophys. 95:416.Google Scholar
  9. 9.
    Fewster, M. E., Burns, B. J., Mead, J. F. 1969. Quantitative densitometric thinlayer chromatography of lipids using copper acetate reagent.J. Chromatog. 43:120.Google Scholar
  10. 10.
    Fletcher, G. L., Stainer, I. M., Holmes, W. N. 1967. Sequential changes in the adenosinetriphosphatase activity and the electrolyte excretory capacity of the nasal glands of the duck (Anas platyrhynchos) during the period of adaptation to hypertonic saline.J. Exp. Biol. 47:375.Google Scholar
  11. 11.
    Flett, M. St. C. 1963. Characteristic frequencies of chemical groups in the infra-red. Elsevier Publishing Company, Amsterdam.Google Scholar
  12. 12.
    Glynn, I. M. 1968. Membrane adenosine triphosphatase and cation transport.Brit. Med. Bull. 24:165.Google Scholar
  13. 13.
    Hakomori, S.-I. 1970. Glycosphingolipids having blood-group ABH and Lewis specificities.Chem. Phys. Lipids 5:96.Google Scholar
  14. 14.
    Hokin, L. E., Hokin, M. R. 1960. Studies on the carrier function of phosphatidic acid in sodium transport. 1. The turnover of phosphatidic acid and phosphoinositide in the avian salt gland on stimulation of secretion.J. Gen. Physiol. 44:61.Google Scholar
  15. 15.
    Hokin, M. R. 1963. Studies on a Na++K+-dependent, ouabain-sensitive adenosine triphosphatase in the avian salt gland.Biochim. Biophys. Acta 77:108.Google Scholar
  16. 16.
    Holmes, W. N., Stewart, D. J. 1968. Changes in the nucleic acid and protein composition of the nasal glands from the duck (Anas platyrhynchos) during the period of adaptation to hypertonic saline.J. Exp. Biol. 48:509.Google Scholar
  17. 17.
    Jatzkewitz, H. 1961. Eine neue Methode zur quantitativen Ultramikrobestimmung der Sphingolipoide aus Gehirn.Z. Physiol. Chemie 326:61.Google Scholar
  18. 18.
    Karlsson, K.-A. 1970. On the chemistry and occurrence of sphingolipid long-chain bases.Chem. Phys. Lipids 5:6.Google Scholar
  19. 19.
    Karlsson, K.-A., Pascher, I., Samuelsson, B. E., Steen, G. O. 1971. Mass spectra of trimethylsilyl ethers of homogenous cerebrosides (galactosylceramides).In preparation.Google Scholar
  20. 20.
    —, Samuelsson, B. E., Steen, G. O. 1968a. Structure and function of sphingolipids. 2. Differences in sphingolipid concentration, especially concerning sulfatides, between some regions of bovine kidney.Acta Chem. Scand. 22:2723.Google Scholar
  21. 21.
    ——— 1968b. Sulfatides and sodium ion transport Sphingolipid composition of the rectal gland of spiny dogfish.FEBS Letters 2:4.Google Scholar
  22. 22.
    ——— 1969a. Sphingolipid composition of the avian salt gland.Biochim. Biophys. Acta 176:429.Google Scholar
  23. 23.
    ——— 1969b. Mass spectrometry of polar complex lipids. Analysis of a sulfatide derivative.Biochem. Biophys. Res. Commun. 37:22.Google Scholar
  24. 24.
    Karlsson, K.-A., Samuelsson, B. E., Steen, G. O. The lipid composition and the Na+−K+-ATPase of the avian salt gland.In preparation.Google Scholar
  25. 25.
    Karlsson, K.-A., Samuelsson, B. E., Steen, G. O. The lipid composition and the Na+−K+-ATPase of the rectal gland of spiny dogfish.In preparation.Google Scholar
  26. 26.
    Milner, L. S., Kaback, H. R. 1970. The role of phosphatidylglycerol in the vectorial phosphorylation of sugar by isolated bacterial membrane preparations.Proc. Nat. Acad. Sci. 65:683.Google Scholar
  27. 27.
    Mårtensson, E. 1963. On the sulfate-containing lipids of human kidney.Acta Chem. Scand. 17:1174.Google Scholar
  28. 28.
    — 1969. Glycosphingolipids of animal tissue.In: Progress in the Chemistry of Fats and Other Lipids, vol. X. R. T. Holman, editor. p. 367. Pergamon Press, Oxford.Google Scholar
  29. 29.
    Newman, H. A. I., Liu, C.-T., Zilversmit, D. B. 1961. Evidence for the physiological occurence of lysolecithin in rat plasma.J. Lipid Res. 2:403.Google Scholar
  30. 30.
    Poincelot, R. P., Millar, P. G., Kimbel, R. L., Jr., Abrahamson, E. W. 1970. Determination of the chromophoric binding site in native bovine rhodopsin.Biochemistry 9:1809.Google Scholar
  31. 31.
    Puro, K., Maury, P., Huttunen, J. K. 1969. Qualitative and quantitative patterns of gangliosides in extraneural tissues.Biochim. Biophys. Acta 187:230.Google Scholar
  32. 32.
    Radin, N. S., Lavin, F. B., Brown, J. R. 1955. Determination of cerebrosides.J. Biol. Chem. 217:789.Google Scholar
  33. 33.
    Rouser, G., Nelson, G. J., Fleischer, S., Simon, G. 1968. Lipid composition of animal cell membranes, organelles and organs.In: Biological Membranes. D. Chapman, editor. p. 5. Academic Press, London and New York.Google Scholar
  34. 34.
    Stahl, E. 1962. Dünnschichtchromatographie, p. 498. Springer-Verlag, Berlin, Göttingen, Heidelberg.Google Scholar
  35. 35.
    Stoffyn, P. J. 1966. The structure and chemistry of sulfatides.J. Amer. Oil Chem. Soc. 43:69.Google Scholar
  36. 36.
    Sweeley, C. C., Vance, D. E. 1967. Gas chromatographic estimation of carbohydrates in glycolipids.In: Lipid Chromatographic Analysis. G. V. Marinetti, editor. p. 465. Marcel Dekker, New York.Google Scholar
  37. 37.
    Uesugi, S., Kahlenberg, A., Medzihradsky, F., Hokin, L. E. 1969. Studies on the characterization of the sodium-potassium transport adenosinetriphosphatase. IV. Properties of a lubrol-solubilized beef brain microsomal enzyme.Arch. Biochem. Biophys. 130:156.Google Scholar
  38. 38.
    Vikrot, O. 1964. Quantitative determination of plasma phospholipids in pregnant and nonpregnant women, with special reference to lysolecithin.Acta Med. Scand. 175:443.Google Scholar
  39. 39.
    Wheeler, K. P., Whittam, R. 1970. ATPase activity of the sodium pump needs phosphatidylserine.Nature 225:449.Google Scholar
  40. 40.
    Widnell, C. C., Unkeless, J. C. 1968. Partial purification of a lipoprotein with 5′-nucleotidase activity from membranes of rat liver cells.Proc. Nat. Acad. Sci. 61:1050.Google Scholar
  41. 41.
    Woolf, C. M. 1968. Principles of Biometry. p. 184. D. van Nostrand Co., Princeton, N. J.Google Scholar

Copyright information

© Springer-Verlag New York Inc 1971

Authors and Affiliations

  • Karl-Anders Karlsson
    • 1
  • Bo E. Samuelsson
    • 1
  • Göran O. Steen
    • 1
  1. 1.Department of Medical Biochemistry, FackUniversity of GöteborgGöteborg 33Sweden

Personalised recommendations