General Relativity and Gravitation

, Volume 28, Issue 10, pp 1269–1292 | Cite as

Integrable multicomponent perfect fluid multidimensional cosmology. I

  • U. Kasper
  • A. Zhuk


Multidimensional cosmological models with a space-time consisting ofn (n ≥2) Einstein spaces are investigated for a special class of multicomponent perfect fluid as a matter source. The dynamical behaviour of the universe is described. In the case of static internal spaces the external space evolves like a Friedmann universe with changing effective equation of state. Some of the models considered are integrable and classical as well as quantum solutions are found. Some of them represent wormholes. Quantum wormholes have a discrete spectrum.

Key words

multidimensional cosmological models solutions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Friedmann, A. (1922).Z. Phys. 10, 377; (1924).21, 326.ADSCrossRefGoogle Scholar
  2. 2.
    Liebscher, D.-E., Bleyer, U. (1985).Gen. Rel. Grav. 17, 989.MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    Szydlowski, M. (1992).Acta Cosmologica 18, 85.ADSGoogle Scholar
  4. 4.
    Ivashchuk, V. D., Melnikov, V. N. (1994).Int. J. Mod. Phys. D 3, 795; (1995).Grav. Cosmology 1, 133.ADSGoogle Scholar
  5. 5.
    Gavrilov, V. R., Ivashchuk, V. D., and Melnikov, V. N. (1995).J. Math. Phys. 36, 5829.MathSciNetADSMATHCrossRefGoogle Scholar
  6. 6.
    Bleyer, U., Liebscher, D.-E., Schmidt, H.-J., and Zhuk, A. I. (1990).Wissenschaftl. Zeitschrift (Universität Jena) 39 Naturwiss. Reihe 20.Google Scholar
  7. 7.
    Zhuk, A. (1992).Class. Quant. Grav. 9, 2029.MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    Zhuk, A. (1992).Phys. Rev. D 45, 1192.MathSciNetADSGoogle Scholar
  9. 9.
    Bleyer, U., Zhuk, A. (1995). “Kasner-like, inflationary and steady state solutions in multidimensional cosmology.” Preprint AIP 95-03.Google Scholar
  10. 10.
    Bleyer, U., Zhuk, A. (1995).Grav. Cosmology 1, 37.ADSMATHGoogle Scholar
  11. 11.
    Bleyer, U., Zhuk, A. (1995).Grav. Cosmology 1, 106.ADSMATHGoogle Scholar
  12. 12.
    Ivashchuk, V. D., Melnikov, V. N. (1995).Class. Quant. Grav. 12, 809.MathSciNetADSMATHCrossRefGoogle Scholar
  13. 13.
    Zhuk, A. (1996). “Integrable scalar field multidimensional cosmologies,” to appear inClass. Quantum Grav.Google Scholar
  14. 14.
    Bleyer, U., Zhuk, A. (1995).Class. Quant. Grav. 12, 89.MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    Barvinsky, A., Kamenshchik, A., and Karamazin, I. (1993).Phys. Rev. D 48, 3677.ADSGoogle Scholar
  16. 16.
    Bleyer, U., Rainer, M., and Zhuk, A. (1996). InNew Frontiers in Gravitation, G. Sardanashvily, ed. (Hadronic Press, Palm Harbour).Google Scholar
  17. 17.
    Rainer, M. (1995).Int. J. Mod. Phys. D 4, 397.MathSciNetADSGoogle Scholar
  18. 18.
    Amendola, L., Kolb, E., Litterio, M., and Occhionero, F. (1990).Phys. Rev. D 42, 1944.ADSGoogle Scholar
  19. 19.
    Rainer, M., Zhuk, A. (1996). “Tensor-multi-scalar theories from multidimensional cosmology.” Preprint of the Free University of Berlin, FUB-HEP/96-3.Google Scholar
  20. 20.
    Vilenkin, A. (1982).Phys. Lett. B 117, 25.MathSciNetADSGoogle Scholar
  21. 21.
    Ivashchuk, V. D., Melnikov, V. N., and Zhuk, A. I. (1989).Nuovo Cimento B 104, 575.MathSciNetADSGoogle Scholar
  22. 22.
    Abramowitz, M., Stegun, I. A. (1964).Handbook of Mathematical Functions (Dover, New York).MATHGoogle Scholar
  23. 23.
    Bleyer, U., Ivashchuk, V. D., Melnikov, V. N., and Zhuk, A. I. (1994).Nucl. Phys. B 429, 177.MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    Hartle, J. B., Hawking, S. W. (1983).Phys. Rev. D 28, 2960.MathSciNetADSGoogle Scholar
  25. 25.
    Vilenkin, A. (1986).Phys. Rev. D 33, 3560.MathSciNetADSGoogle Scholar
  26. 26.
    Hawking, S. W., Page, D. N. (1990).Phys. Rev. D 42, 2655.MathSciNetADSGoogle Scholar
  27. 27.
    Landau, L. D., Lifshitz, E. M. (1965).Quantum Mechanics (Pergamon, Oxford).MATHGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • U. Kasper
    • 1
  • A. Zhuk
    • 1
  1. 1.Institut für Mathematik, Projektgruppe KosmologieUniversität PotsdamPotsdamGermany

Personalised recommendations