Advertisement

Acta Mathematica Sinica

, Volume 12, Issue 3, pp 268–284 | Cite as

Geometric parameters corresponding to representations of the classical groups with integral infinitesimal characters

  • Hou Zixin
  • Zhao Qiang
Article

Abstract

In this paper we calculate the orbits of flag manifolds of the complex classical groups under the action of the sets of fixed points of Cartan involutions, and determine all the geometric parameters corresponding to representations of the classical groups with integral infinitesimal characters, which are used to discuss Arthur conjecture and the Langlands classification of the irreducible admissible representations of real classical groups(see[1])

Keywords

Extended groups Strong real forms E-groups Geometric parameters 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Adams J, Barbasch D, Vogan D. The Langlands classification and irreducible characters for real reductive groups.Progress in Math,104.Google Scholar
  2. [2]
    Helgason S. Differential Geometry, Lie Groups and Symmetric Spaces. Academic Press, 1978.Google Scholar
  3. [3]
    Matsuki T. The orbits of affine symmetric spaces under the action of minimal parabolic subgroups.J Math Soc Japan, 1979,31: 331–357.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    Aomoto K. On some double coset decompositions of complex semisimple Lie groups.J Math Soc Japan, 1966,18: 1–44.MATHMathSciNetCrossRefGoogle Scholar
  5. [5]
    Wolf J A. The action of a real semisimple groups on a complex flag manifold.Bull Amer Math Soc, 1969,75: 1121–1237.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    Spécht W. Gruppentheorie. Berlin: Springer-Verlag, 1956.MATHGoogle Scholar
  7. [7]
    Langlands R P. Math Surveys and Monnographs, 198931: 101–171.MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Hou Zixin
    • 1
  • Zhao Qiang
    • 2
    • 3
  1. 1.Department of MathematicsNankai UniversityTianjinChina
  2. 2.Department of MathematicsPeking UniversityBeijingChina
  3. 3.Department of MathematicsNorthwest Normal UniversityLanzhouChina

Personalised recommendations