Siberian Mathematical Journal

, Volume 36, Issue 6, pp 1194–1202 | Cite as

Some criteria and properties of Chebyshev systems

  • I. Rasa
  • L. G. Labsker
Article
  • 79 Downloads

Keywords

Chebyshev System 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. G. Labsker and I. Rasa, “Tchebycheff systems: some criteria and properties. III,” Bull. Appl. Math. (Hungary),59, No. 736–750, 79–84 (1991).Google Scholar
  2. 2.
    I. Rasa, “A remark on Tchebycheff systems,” Anal. Numér. Théor. Approx.,6, No. 2, 193–195 (1977).Google Scholar
  3. 3.
    L. G. Labsker, “Characterization of Chebyshev systems and sufficient conditions for their nonextendability,” Dokl. Akad. Nauk SSSR,276, No. 2, 277–281 (1984).Google Scholar
  4. 4.
    L. G. Labsker, “On a certain criterion for Chebyshev systems,” Mat. Zametki,39, No. 2, 196–211 (1986).Google Scholar
  5. 5.
    L. G. Labsker and I. Rasa, “Tchebycheff systems: some criteria and properties. I,” Bull. Stiint. Inst. Politehn. Cluj-Napoca Ser. Mat. Mec. Apl. Construc. Mas.,33, 7–10 (1990).Google Scholar
  6. 6.
    S. Karlin and W. J. Studden, Tchebycheff Systems with Applications in Analysis and Statistics [Russian translation], Nauka, Moscow (1976).Google Scholar
  7. 7.
    M. G. Krein and A. A. Nudel'man, The Markov Moment Problem and Extremal Problems. Ideas and Problems of P. L. ChebyshËv and A. A. Markov and Their Further Development [in Russian], Nauka, Moscow (1973).Google Scholar
  8. 8.
    V. I. Volkov, “On a certain generalization of S. N. Bernshtein's theorem,” Uchen. Zap. Kalininsk. Ped. Inst.,69, 32–38 (1969).Google Scholar
  9. 9.
    O. M. Vinogradov, “On some classes of Korovkin's systems,” in: Application of Functional Analysis in Approximation Theory [in Russian], Kalinin, 1981, pp. 25–36.Google Scholar
  10. 10.
    L. G. Labsker, “On existence of polynomials with arbitrarily disposed zeros for a Chebyshev-type system,” in: Application of Functional Analysis in Approximation Theory [in Russian], Kalinin, 1985, pp. 76–82.Google Scholar
  11. 11.
    L. G. Labsker, “An example of a nonextendable Chebyshev system of algebraic polynomials admitting polynomials with an arbitrary disposition of zeros,” in: Application of Functional Analysis in Approximation Theory [in Russian], Kalinin, 1984, pp. 102–106.Google Scholar
  12. 12.
    R. K. S. Rathore and P. N. Agrawal, “The unsettled problem of M. G. Krein on nonnegative polynomials inT-systems,” SIAM J. Math. Anal.,10, No. 5, 1092–1094 (1979).Google Scholar
  13. 13.
    R. Zielke, “Tchebycheff systems that cannot be transformed into Markov systems,” Manuscripta Math.,17, No. 1, 67–71 (1975).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • I. Rasa
    • 1
    • 2
  • L. G. Labsker
    • 1
    • 2
  1. 1.ClujRomania
  2. 2.Moscow

Personalised recommendations