Advertisement

Siberian Mathematical Journal

, Volume 36, Issue 6, pp 1049–1057 | Cite as

A new example of a flexible polyhedron

  • V. A. Aleksandrov
Article

Keywords

Flexible Polyhedron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. D. Alexandrov, Intrinsic Geometry of Convex Surfaces [in Russian], Gostekhteorizdat, Moscow-Leningrad (1948).Google Scholar
  2. 2.
    R. Bricard, “Memoire sur la théorie de l'octaèdre articulé,” J. Math. Pures Appl.,3, 113–148 (1897).Google Scholar
  3. 3.
    R. Connelly, “An immersed polyhedral surface which flexes,” Indiana Univ. Math. J.,25, 965–972 (1976).Google Scholar
  4. 4.
    M. Berger, Geometry. Vol. 1 [Russian translation], Mir, Moscow (1984).Google Scholar
  5. 5.
    R. Connelly, Conjectures and Open Questions in Rigidity [Preprint], Cornell University (1976). (Russian translation in: Studies on the Metric Theory of Surfaces, Mir, Moscow, 1980, pp. 164–209.)Google Scholar
  6. 6.
    R. Connelly, An Attack on Rigidity. I and II [Preprint], Cornell University (1974). (Russian translation in: Studies on the Metric Theory of Surfaces, Mir, Moscow, 1980, pp. 228–238.)Google Scholar
  7. 7.
    V. G. Boltyanskii, The Hilbert Third Problem [in Russian], Nauka, Moscow (1977).Google Scholar
  8. 8.
    R. Connelly, “The rigidity of polyhedral surfaces,” Math. Mag.,52, 275–283 (1979).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • V. A. Aleksandrov
    • 1
  1. 1.Novosibirsk

Personalised recommendations