Advertisement

Journal of Soviet Mathematics

, Volume 31, Issue 3, pp 2887–2939 | Cite as

Model-theoretic and algorithmic questions in group theory

  • V. N. Remeslennikov
  • V. A. Roman'kov
Article

Abstract

This paper provides a survey of results of an algorithmic nature. Model-theoretic methods and results in group theory are discussed.

Keywords

Group Theory Algorithmic Nature Algorithmic Question 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    A. I. Abakumov, E. A. Palyutin, M. A. Taitslin, and Yu. E. Shishmarev, “Categorical quasivarieties,” Algebra Logika,11, No. 1, 3–38 (1972).Google Scholar
  2. 2.
    Automorphisms of Classical Groups [Russian translation], Mir, Moscow (1976).Google Scholar
  3. 3.
    S. I. Adyan, “Algorithmic unsolvability of problems of recognizing certain group properties,” Dokl. Akad. Nauk SSSR,103, No. 4, 533–535 (1955).Google Scholar
  4. 4.
    S. I. Adyan, “Finitely presented groups and algorithms,” Dokl. Akad. Nauk SSSR,117, No. 1, 9–12 (1957).Google Scholar
  5. 5.
    S. I. Adyan, “Algorithmic problems in effectively complete classes of groups,” Dokl. Akad. Nauk SSSR,123, No. 1, 13–18 (1958).Google Scholar
  6. 6.
    S. I. Adyan, “Unsolvability of some algorithmic problems of group theory,” Tr. Mosk. Mat. Obshch.,6, 231–298 (1957).Google Scholar
  7. 7.
    S. I. Adyan, “Infinite irreducible systems of group identities,” Izv. Akad. Nauk SSSR, Ser. Mat.,34, No. 4, 715–734 (1970).Google Scholar
  8. 8.
    S. I. Adyan, “Identical relations in groups,” in: International Congress of Mathematicians at Nice, Nauka, Moscow (1972), pp. 7–13.Google Scholar
  9. 9.
    S. I. Adyan, The Burnside Problem and Identities in Groups [in Russian], Nauka, Moscow (1975).Google Scholar
  10. 10.
    S. I. Adyan, “Normal subgroups of free periodic groups,” Izv. Akad. Nauk SSSR, Ser. Mat.,45, No. 5, 931–947 (1981).Google Scholar
  11. 11.
    S. I. Adyan, “Periodic products of groups,” Tr. Mat. Inst. Akad. Nauk SSSR,142, 3–21 (1976).Google Scholar
  12. 12.
    V. N. Bezverkhnii, “Solution of the occurrence problem for one class of groups,” in: Questions in the Theory of Groups and Semigroups [in Russian], Tula (1972), pp. 3–86.Google Scholar
  13. 13.
    V. N. Bezverkhnii, “The Nielsen cancellation method for a free product of groups,” Sb. Nauch. Tr. Kafedr. Vyssh. Mat. Tyl'sk. Politekh. Inst., No. 1, 44–70 (1972).Google Scholar
  14. 14.
    V. N. Bezverkhnii, “The intersection of finitely generated subgroups of a free group,” Sb. Nauch. Tr. Kafedr. Vyssh. Mat. Tul'sk. Politekh. Inst., No. 2, 51–56 (1974).Google Scholar
  15. 15.
    V. N. Bezverkhnii, “Unsolvability of the occurrence problem for a certain class of groups,” Sb. Nauch. Tr. Kafedr. Vyssh. Mat. Tul'sk. Politekh. Inst., No. 2, 117–121 (1974).Google Scholar
  16. 16.
    V. N. Bezverkhnii, “Unsolvability of the problem of conjugacy of subgroups for a free product of free groups with amalgamation,” Sb. Nauch. Tr. Kafedr. Vyssh. Mat. Tul'sk. Politekh. Inst., No. 3, 90–94 (1975).Google Scholar
  17. 17.
    V. N. Bezverkhnii, “Solution of the problem of conjugacy of subgroups for a certain class of groups, I, II,” in: Modern Algebra [in Russian], No. 6, 16–23, 24–32 (1977).Google Scholar
  18. 18.
    V. N. Bezverkhnii, “Solution of the occurrence problem in the class of HNN-groups,” in: Algorithmic Problems in the Theory of Groups and Semigroups [in Russian], Tula (1981), pp. 20–62.Google Scholar
  19. 19.
    V. N. Bezverkhnii and V. A. Grinblat, “The root problem in Artin groups,” in: Algorithmic Problems in the Theory of Groups and Semigroups [in Russian], Tula (1981), pp. 72–81.Google Scholar
  20. 20.
    V. N. Bezverkhnii and V. A. Grinblat, “The occurrence problem in Artin groups of finite type,” Sib. Mat. Zh.,23, No. 4, 19–28 (1982).Google Scholar
  21. 21.
    I. S. Bezverkhnyaya, “Conjugacy of finite sets of subgroups in a free product of groups,” in: Algorithmic Problems in the Theory of Groups and Semigroups [in Russian], Tula (1981), pp. 102–116.Google Scholar
  22. 22.
    O. V. Belegradek, “Algebraically closed groups,” Algebra Logika,13, No. 3, 239–255 (1974).Google Scholar
  23. 23.
    O. V. Belegradek, “Definability in algebraically closed groups,” Mat. Zametki,16, No. 3, 375–380 (1974).Google Scholar
  24. 24.
    O. V. Belegradek, “Unstable theories of groups,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 8, 41–44 (1978).Google Scholar
  25. 25.
    O. V. Belegradek, “On m-degree of the word problem,” Sib. Mat. Zh.,19, No. 6, 1232–1236 (1978).Google Scholar
  26. 26.
    O. V. Belegradek, “Elementary properties of algebraically closed groups,” Fund. Math.,98, No. 2, 83–101 (1978).Google Scholar
  27. 27.
    O. V. Belegradek, “Algebraic equivalents of solvability of group-theoretic algorithmic problems,” Sib. Mat. Zh.,20, No. 5, 953–963 (1979).Google Scholar
  28. 28.
    V. Ya. Belyaev and M. A. Taitslin, “Elementary properties of existentially closed systems,” Usp. Mat. Nauk,34, No. 2, 39–94 (1979).Google Scholar
  29. 29.
    A. N. Bobrovskii, “Subgroups and Schreier systems in a free product of groups with a common amalgamation,” Preprint, Tula State Pedagogic Institute, Tula (1979); VINITI No. 382-80.Google Scholar
  30. 30.
    L. A. Bokut', “On Novikov groups,” Algebra Logika,6, No. 1, 25–38 (1967).Google Scholar
  31. 31.
    L. A. Bokut', “A property of Boone groups,” Algebra Logika,5, No. 5, 5–23 (1966); II, Algebra Logika,6, No. 1, 15–24 (1967).Google Scholar
  32. 32.
    L. A. Bokut', “Degrees of unsolvability of the conjugacy problem for finitely presented groups,” Algebra Logika,7, No. 5, 4–70 (1968).Google Scholar
  33. 33.
    V. V. Borisov, “Simple examples of groups with undecidable identity problem,” Mat. Zametki,6, No. 5, 521–532 (1969).Google Scholar
  34. 34.
    E. Brieskorn and K. Saito, “Artin-Gruppen und Coxeter-Gruppen,” Invent. Math.,17, 245–271 (1972).CrossRefGoogle Scholar
  35. 35.
    S. D. Brodskii, “Equations over groups and groups with one defining relation,” Preprint, Ivanovo Univ., Ivanovo (1980); VINITI No. 2214-80.Google Scholar
  36. 36.
    M. K. Valiev, “On a theorem of G. Higman,” Algebra Logika,7, No. 3, 9–22 (1968).Google Scholar
  37. 37.
    M. K. Valiev, “Examples of universal finitely presented groups,” Dokl. Akad. Nauk SSSR,211, No. 2, 265–268 (1973); correction: Dokl. Akad. Nauk SSSR,215, No. 1, 10 (1974).Google Scholar
  38. 38.
    V. G. Vasil'ev, “On elementarily equivalent solvable groups,” Dokl. Akad. Nauk SSSR,208, No. 4, 761–763 (1973).Google Scholar
  39. 39.
    V. G. Vasil'ev, “On elementarily equivalent solvable groups,” in: Some Questions in the Theory of Groups and Rings [in Russian], Krasnoyarsk (1973), pp. 9–22.Google Scholar
  40. 40.
    é. S. Vasil'ev, “Elementary theories of two-basic models of Abelian groups,” in: Algebra [in Russian], No. 2, Irkutsk (1973), pp. 62–68.Google Scholar
  41. 41.
    é. S. Vasil'ev, “Elementary theories of complete torsion-free Abelian groups with the p-adic topology,” Mat. Zametki,14, No. 2, 201–208 (1973).Google Scholar
  42. 42.
    é. S. Vasil'ev, “Elementary theories of Abelian p-groups with heights of elements,” in: Algebraic Systems [in Russian], Irkutsk (1976), pp. 17–20.Google Scholar
  43. 43.
    F. A. Garside, “The braid group and other groups,” Quart. J. Math. Oxford Second Ser.,20, 235–254 (1969).Google Scholar
  44. 44.
    A. V. Gladkii, “The nilpotency class of a group with a δ-basis,” Dokl. Akad. Nauk SSSR,125, No. 5, 963–965 (1959).Google Scholar
  45. 45.
    A. V. Gladkii, “Groups with a k-cancellable basis,” Dokl. Akad. Nauk SSSR,134, No. 1, 16–18 (1960).Google Scholar
  46. 46.
    A. I. Gol'berg, “Impossibility of improving certain results of Greendlinger and Lyndon,” Usp. Mat. Nauk,33, No. 6, 202–202 (1978).Google Scholar
  47. 47.
    N. P. Gol'dina, “Solution of some algorithmic problems for free and free nilpotent groups,” Usp. Mat. Nauk,13, No. 3, 183–189 (1958).Google Scholar
  48. 48.
    A. P. Goryushkin, “On the index problem,” Uch. Zap. Ivanov. Gos. Ped. Inst.,117, 59–76 (1972).Google Scholar
  49. 49.
    A. V. Goryaga and A. S. Kirkinskii, “Solvability of the conjugacy problem does not carry over to finite group extensions,” Algebra Logika,14, No. 4, 393–406 (1975).Google Scholar
  50. 50.
    V. A. Grinblat, “Solvability of the identity problem in a certain class of groups,” in: Special Chapters of Higher Mathematics in the Theory and Practice of Engineering Problems [in Russian], Tula (1978), pp. 92–95.Google Scholar
  51. 51.
    V. A. Grinblat, “Normalizers of Artin groups,” in: Algorithmic Problems in the Theory of Groups and Semigroups [in Russian], Tula (1981), pp. 82–94.Google Scholar
  52. 52.
    M. D. Greendlinger, “On Magnus's generalized word problem,” Sib. Mat. Zh.,5, No. 4, 955–957 (1964).Google Scholar
  53. 53.
    M. D. Greendlinger, “Solution of the conjugacy problem for a class of groups coinciding with their anticenters by means of the generalized Dehn algorithm,” Dokl. Akad. Nauk SSSR,158, No. 6, 1254–1256 (1964).Google Scholar
  54. 54.
    M. D. Greendlinger, “Improvement of two theorems for a certain class of groups,” Sib. Mat. Zh.,6, No. 5, 972–984 (1965).Google Scholar
  55. 55.
    M. D. Greendlinger, “On the word and conjugacy problems,” Izv. Akad. Nauk SSSR, Ser. Mat.,29, No. 2, 245–268 (1965).Google Scholar
  56. 56.
    M. D. Greendlinger, “The conjugacy problem and coincidence with the anticenter in group theory,” Sib. Mat. Zh.,7, No. 4, 785–803 (1966).Google Scholar
  57. 57.
    M. D. Greendlinger, “Solutions of the word problem for a class of groups by Dehn's algorithm and of the conjugacy problem by a generalization of Dehn's algorithm,” Dokl. Akad. Nauk SSSR,154, No. 3, 507–509 (1964).Google Scholar
  58. 58.
    M. D. Greendlinger, “Determination of the factor group of a normal subgroup of a free group with respect to the mutual commutant,” Mat. Zap. Ural'sk. Univ.,7, No. 3, 72–76 (1970).Google Scholar
  59. 59.
    M. D. Greendlinger, “Conjugacy of subgroups of free groups,” Sib. Mat. Zh.,11, No. 5, 1178–1180 (1970).Google Scholar
  60. 60.
    G. A. Gurevich, “The conjugacy problem for groups with one defining relation,” Dokl. Akad. Nauk SSSR,207, No. 1, 18–20 (1972); Tr. Mat. Inst. Akad. Nauk SSSR,133, 109–120 (1973).Google Scholar
  61. 61.
    Yu. Sh. Gurevich, “Elementary properties of ordered Abelian groups,” Algebra Logika,3, No. 1, 5–40 (1964).Google Scholar
  62. 62.
    Yu. Sh. Gurevich, “Hereditary unsolvability of a class of lattice-ordered Abelian groups,” Algebra Logika,6, No. 1, 45–62 (1967).Google Scholar
  63. 63.
    Yu. Sh. Gurevich, “Elementary theory of lattice-ordered Abelian groups and K-lineals,” Dokl. Akad. Nauk SSSR,175, No. 6, 1213–1215 (1967).Google Scholar
  64. 64.
    Yu. Sh. Gurevich, “A decision procedure for an extended theory of ordered Abelian groups,” preprint, Editorial Board of Sib. Mat. Zh. Akad. Nauk SSSR, Novosibirsk (1973); VINITI No. 6708-73.Google Scholar
  65. 65.
    Yu. Sh. Gurevich and A. I. Kokorin, “Universal equivalence of ordered Abelian groups,” Algebra Logika,2, No. 1, 37–39 (1963).Google Scholar
  66. 66.
    A. T. Dzhunisov, “Some classes of groups with finitely separable subgroups,” Tr. Inst. Mat. Mekh. Akad. Nauk KazSSR,2, 18–27 (1971).Google Scholar
  67. 67.
    V. G. Durnev, “Systems of equations on free nilpotent groups,” in: Questions in Group Theory and Homological Algebra [in Russian], Yaroclavl (1981), pp. 66–69.Google Scholar
  68. 68.
    V. I. Epanchintsev and G. P. Kukin, “The equality problem in a variety of groups that containsR2U,” Algebra Logika,18, No. 3, 259–285 (1979).CrossRefGoogle Scholar
  69. 69.
    Yu. L. Ershov, “Decidability of elementary theories of certain classes of Abelian groups,” Algebra Logika,1, No. 6, 37–41 (1963).Google Scholar
  70. 70.
    Yu. L. Ershov, “Undecidability of the theory of symmetric and finite simple groups,” Dokl. Akad. Nauk SSSR,158, No. 4, 777–779 (1964).Google Scholar
  71. 71.
    Yu. L. Ershov, “Decidability of certain elementary theories,” Algebra Logika,3, No. 2, 45–47 (1964).Google Scholar
  72. 72.
    Yu. L. Ershov, “On elementary theories of groups,” Dokl. Akad. Nauk SSSR,203, No. 6, 1240–1243 (1972).Google Scholar
  73. 73.
    Yu. L. Ershov, Decidability Problems and Constructive Models [in Russian], Nauka, Moscow (1980).Google Scholar
  74. 74.
    Yu. L. Ershov, I. A. Lavrov, A. D. Taimanov, and M. A. Taitslin, “Elementary theories,” Usp. Mat. Nauk,20, No. 4, 37–108 (1965).Google Scholar
  75. 75.
    Yu. L. Ershov and E. A. Palyutin, Mathematical Logic [in Russian], Nauka, Moscow (1979).Google Scholar
  76. 76.
    A. P. Zamyatin, “A non-Abelian variety of groups has an undecidable elementary theory,” Algebra Logika,17, No. 1, 20–27 (1978).Google Scholar
  77. 77.
    B. I. Zil'ber, “An example of two elementarily equivalent, nonisomorphic, finitely generated, metabelian groups,” Algebra Logika,10, No. 3, 309–315 (1971).Google Scholar
  78. 78.
    B. I. Zil'ber, “Uncountably categorical nilpotent groups and Lie algebras,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 5, 75 (1982).Google Scholar
  79. 79.
    B. I. Zil'ber, “Groups and rings whose theory is categorical,” Fund. Math.,95, No. 3, 173–188 (1977).Google Scholar
  80. 80.
    B. I. Zil'ber, “Structure of models of categorical theories and the finite axiomatiza- bility problem,” preprint, Kemerovo Univ., Kemerovo (1977); VINITI No. 2800-77.Google Scholar
  81. 81.
    K. A. Ivanov, “Elementary properties of the unitary and orthogonal groups,” preprint, Editorial Board of Izv. Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, Minsk (1974); VINITI No. 2735-74.Google Scholar
  82. 82.
    S. G. Ivanov, “The occurrence problem for a free product of groups with an amalgamated subgroup,” Sib. Mat. Zh.,16, No. 6, 1155–1171 (1975).Google Scholar
  83. 83.
    M. E. Iofinova, “Polynilpotent groups with one defining relation,” Vestn. Mosk. Univ. Mat. Mekh., No. 3, 9–12 (1974).Google Scholar
  84. 84.
    M. I. Kargapolov, “Elementary theory of subgroup lattices,” Algebra Logika,1, No. 3, 46–53 (1962).Google Scholar
  85. 85.
    M. I. Kargapolov, “Elementary theory of Abelian groups,” Algebra Logika,1, No. 6, 26–36 (1963).Google Scholar
  86. 86.
    M. I. Kargapolov, “Classification of ordered Abelian groups by elementary properties,” Algebra Logika,2, No. 2, 31–46 (1963).Google Scholar
  87. 87.
    M. I. Kargapolov, “Preorderable groups. I,” Algebra Logika,2, No. 6, 5–14 (1963).Google Scholar
  88. 88.
    M. I. Kargapolov, “Residual finiteness of supersolvable groups with respect to conjugacy,” Algebra Logika,6, No. 1, 63–68 (1967).Google Scholar
  89. 89.
    M. I. Kargapolov and Yu. I. Merzlyakov, Fundamentals of Group Theory [in Russian], Nauka, Moscow (1982).Google Scholar
  90. 90.
    M. I. Kargapolov and V. N. Remeslennikov, “The conjugacy problem for free solvable groups,” Algebra Logika,5, No. 6, 15–25 (1966).Google Scholar
  91. 91.
    M. I. Kargapolov, V. N. Remeslennikov, N. S. Romanovskii, V. A. Roman'kov, and V. A. Churkin, “Algorithmic questions forD -powered groups,” Algebra Logika,8, No. 6, 643–659 (1969).Google Scholar
  92. 92.
    M. I. Kargapolov and E. I. Timoshenko, “On the question of residual finiteness with respect to conjugacy of metabelian groups,” in: Abstracts of Reports of the Fourth All-Union Symposium on Group Theory, Novosibirsk (1973), pp. 86–88.Google Scholar
  93. 93.
    E. V. Kashintsev, “On the identity problem,” Uch. Zap. Ivanov. Gos. Ped. Inst.,61, 136–147 (1969).Google Scholar
  94. 94.
    E. V. Kashintsev, “A generalization of a result of Greendlinger,” Uch. Zap. Ivanov. Gos. Pedagog. Inst.,61, 152–155 (1969).Google Scholar
  95. 95.
    H. J. Keisler and C. C. Chang, Model Theory, North-Holland, Amsterdam (1977).Google Scholar
  96. 96.
    A. S. Kirkinskii and V. N. Remeslennikov, “The isomorphism problem for solvable groups,” Mat. Zametki,18, No. 3, 437–443 (1975).Google Scholar
  97. 97.
    V. P. Klassen, “The occurrence problem for a certain class of groups,” Algebra Logika,9, No. 3, 306–312 (1970).Google Scholar
  98. 98.
    V. P. Klassen, “The occurrence and conjugacy problems for certain group extensions,” in: Questions in the Theory of Groups and Semigroups [in Russian], Tula (1972), pp. 87–95.Google Scholar
  99. 99.
    Yu. G. Kleiman, “Identities and some algorithmic problems in groups,” Dokl. Akad. Nauk SSSR,244, No. 4, 814–818 (1979).Google Scholar
  100. 100.
    Yu. G. Kleiman, “Identities in groups,” Tr. Mosk. Mat. Obshch.,44, 62–108 (1982).Google Scholar
  101. 101.
    G. T. Kozlov, “Undecidability of the elementary theory of subgroup lattices of finite Abelian p-groups,” Algebra Logika,9, No. 2, 167–171 (1970).Google Scholar
  102. 102.
    G. T. Kozlov, “Undecidability of the theory of Abelian groups with a chain of subgroups,” in: Algebra [in Russian], No. 1, Irkutsk (1972), pp. 21–24.Google Scholar
  103. 103.
    G. T. Kozlov and A. I. Kokorin, “The elementary theory of torsion-free Abelian groups with a predicate distinguishing a subgroup,” Algebra Logika,8, No. 3, 320–334 (1969).Google Scholar
  104. 104.
    G. T. Kozlov and A. I. Kokorin, “Proof of a lemma on model-completeness,” Algebra Logika,14, No. 5, 533–535 (1975).Google Scholar
  105. 105.
    A. I. Kokorin and G. T. Kozlov, “Extended elementary and universal theories of latticeordered Abelian groups with a finite number of strings,” Algebra Logika,7, No. 1, 91- 103 (1968).Google Scholar
  106. 106.
    A. I. Kokorin and V. I. Mart'yanov, “Universal extended theories,” in: Algebra [in Russian], No. 2, Irkutsk (1973), pp. 107–113.Google Scholar
  107. 107.
    A. I. Kokorin and A. G. Pinus, “Questions of the decidability of extended theories,” Usp. Mat. Nauk,33, No. 2, 49–84 (1978).Google Scholar
  108. 108.
    A. I. Kokorin and N. G. Khisamiev, “Elementary classification of lattice-ordered Abelian groups with a finite number of strings,” Algebra Logika,5, No. 1, 41–50 (1966).Google Scholar
  109. 109.
    V. M. Kopytov, “Solvability of the occurrence problem in finitely generated solvable matrix groups over an algebraic number field,” Algebra Logika,7, No. 6, 53–63 (1968).Google Scholar
  110. 110.
    V. M. Kopytov, “Solvability of the occurrence problem in finitely generated solvable matrix groups over a numbered field,” Algebra Logika,10, No. 2, 169–182 (1971).Google Scholar
  111. 111.
    V. M. Kopytov, “Ordered groups,” in: Progress in Science and Engineering (Itogi Nauki i Tekhniki). Algebra. Topology. Geometry [in Russian], Vol. 19, VINITI (1981), pp. 3–30.Google Scholar
  112. 112.
    R. H. Crowell and R. H. Fox, Introduction to Knot Theory, Ginn, Boston (1963).Google Scholar
  113. 113.
    A. V. Kuznetsov, “Algorithms as operations in algebraic systems,” Usp. Mat. Nauk,13, No. 3, 240–241 (1958).Google Scholar
  114. 114.
    G. P. Kukin and V. A. Roman'kov, “The school of mathematical logic and algorithmic problems of algebra,” Usp. Mat. Nauk,34, No. 3, 227–228 (1979).Google Scholar
  115. 115.
    A. B. Livchak, “A decision procedure for the elementary theory of a torsion-free Abelian group with a distinguished subgroup,” Mat. Zap. Ural. Univ.,8, No. 3, 73–81 (1973).Google Scholar
  116. 116.
    A. B. Livchak, “Elimination of equality in the theory of Abelian groups with distinguished subgroups,” in: Algebraic Systems [in Russian], Irkutsk (1976), pp. 79–93.Google Scholar
  117. 117.
    A. B. Livchak, “Remarks on A. B. Livchak's article ‘A decision procedure for the elementary theory of a torsion-free Abelian group with a distinguished subgroup’,” Mat. Zap. Ural. Univ.,12, No. 1, 161 (1980).Google Scholar
  118. 118.
    V. Ya. Lin, “Artin braids and their associated groups and spaces,” in: Progress in Science and Engineering (Itogi Nauki i Tekhniki), Algebra. Topology. Geometry [in Russian], Vol. 17, VINITI (1979), pp. 159–228.Google Scholar
  119. 119.
    R. C. Lyndon and P. E. Schupp, Combinatorial Group Theory, Springer-Verlag (1977).Google Scholar
  120. 120.
    L. P. Lisovik, “The problem of occurrence in regular subsets for a free product of groups,” preprint, Editorial Board of Sib. Mat, Zh., Novosibirsk (1978); VINITI No. 3406-78.Google Scholar
  121. 121.
    Z. K. Litvintseva, “Complexity of certain problems for groups and semigroups,” Dokl. Akad. Nauk SSSR,191, No. 5, 989–992 (1970).Google Scholar
  122. 122.
    A. A. Lorents, “Representations of solution sets of systems of equations with one unknown in a free group,” Dokl. Akad. Nauk SSSR,178, No. 2, 290–292 (1968).Google Scholar
  123. 123.
    N. G. Lukovnikov and V. I. Mart'yanov, “Universal element-subgroup theories of Abelian groups,” in: Algorithmic Questions for Algebraic Systems [in Russian], Irkutsk (1978), pp. 42–57.Google Scholar
  124. 124.
    W. Magnus, A. Karrass, and D. Solitar, Combinatorial Group Theory: Presentations of Groups in Terms of Generators and Relations, Interscience (1966).Google Scholar
  125. 125.
    G. S. Makanin, “The conjugacy problem in a braid group,” Dokl. Akad. Nauk SSSR,182, No. 3, 495–496 (1968).Google Scholar
  126. 126.
    G. S. Makanin, “Equations in a free group,” Izv. Akad. Nauk SSSR, Ser. Mat.,46, No. 6, 1199–1273 (1982).Google Scholar
  127. 127.
    T. A. Makanina, “The occurrence problem for the braid groupB n+1 with n+1⩾5,” Mat. Zametki,29, No. 1, 31–33 (1981).Google Scholar
  128. 128.
    A. I. Mal'tsev, “On embedding associative systems into groups,” Mat. Sb.,6, No. 2, 331–336 (1939); II, Mat. Sb.,8, No. 2, 251–264 (1940).Google Scholar
  129. 129.
    A. I. Mal'tsev, “Two remarks on nilpotent groups,” Mat. Sb.,37, No. 3, 567–575 (1955).Google Scholar
  130. 130.
    A. I. Mal'tsev, “Homomorphisms onto finite groups,” Uch. Zap. Ivanov. Gos. Pedagog. Inst.,18, No. 5, 49–60 (1958).Google Scholar
  131. 131.
    A. I. Mal'tsev, “On a correspondence between rings and groups,” Mat. Sb.,50, No. 3, 257–266 (1960).Google Scholar
  132. 132.
    A. I. Mal'tsev, “On free solvable groups,” Dokl. Akad. Nauk SSSR,130, No. 3, 495–498 (1960).Google Scholar
  133. 133.
    A. I. Mal'tsev, “Undecidability of the elementary theory of finite groups,” Dokl. Akad. Nauk SSSR,138, No. 4, 771–774 (1961).Google Scholar
  134. 134.
    A. I. Mal'tsev, “Elementary properties of linear groups,” in: Problems of Mathematics and Mechanics [in Russian], Siberian Branch, Academy of Sciences of the USSR, Novosibirsk (1961), pp. 110–132.Google Scholar
  135. 135.
    A. I. Mal'tsev, Algebraic Systems [in Russian], Nauka, Moscow (1970).Google Scholar
  136. 136.
    A. A. Markov, “Impossibility of certain algorithms in the theory of associative systems,” Dokl. Akad. Nauk SSSR,77, 19–20 (1951).Google Scholar
  137. 137.
    A. A. Markov, “On the problem of representability of matrices,” Z. Math. Log. Grundl. Math.,4, No. 2, 157–168 (1958).Google Scholar
  138. 138.
    A. A. Markov, “Insolubility of the problem of homeomorphy,” in: Proceedings of the International Conference of Mathematicians, 1958, Cambridge Univ. Press, London-New York (1960), pp. 300–306.Google Scholar
  139. 139.
    A. A. Markov, “Undecidability of the problem of homeomorphy,” Dokl. Akad. Nauk SSSR,121, No. 2, 218–220 (1958).Google Scholar
  140. 140.
    G. N. Markshaitis (Markšaitis), “Solvability of the word problem for certain groups,” Liet. Mat. Rinkinys (Lit. Mat. Sb.),20, No. 2, 87–90 (1980).Google Scholar
  141. 141.
    V. I. Mart'yanov, “Decidability of the theories of certain classes of Abelian groups with predicates and an automorphism,” in: Algebra [in Russian], No. 1, Irkutsk (1972), pp. 55–68.Google Scholar
  142. 142.
    V. I. Mart'yanov, “On the theory of Abelian groups with predicates distinguishing subgroups and with endomorphism operations,” Algebra Logika,14, No. 5, 536–542 (1975).Google Scholar
  143. 143.
    V. I. Mart'yanov, “Decidability of the theory of complete torsion-free Abelian groups of finite rank with predicates of addition and an automorphism,” in: Algebraic Systems [in Russian], Irkutsk (1976), pp. 94–106.Google Scholar
  144. 144.
    V. I. Mart'yanov, “Decidability of the theory of complete torsion-free Abelian groups with automorphisms,” in: Algorithmic Questions for Algebraic Systems [in Russian], Irkutsk (1978), pp. 58–72.Google Scholar
  145. 145.
    V. I. Mart'yanov, “Undecidability of the theory of Abelian groups with an automorphism,” Mat. Zametki,23, No. 4, 515–520 (1978).Google Scholar
  146. 146.
    W. Massey and J. Stallings, Algebraic Topology: An Introduction [Russian translation], Mir, Moscow (1977).Google Scholar
  147. 147.
    Yu. I. Merzlyakov, “Positive formulas on free groups,” Algebra Logika,5, No. 4, 25–42 (1966).Google Scholar
  148. 148.
    Yu. I. Merzlyakov, “Linear groups,” in: Algebra. Topology. Geometry. 1970 [in Russian], Progress in Science (Itogi Nauki), VINITI Akad. Nauk SSSR, Moscow (1971), pp. 75–110.Google Scholar
  149. 149.
    Yu. I. Merzlyakov, “Linear groups,” in: Progress in Science and Engineering (Itogi Nauki i Tekhniki). Algebra. Topology. Geometry [in Russian], Vol. 16, VINITI (1978), pp. 35–89.Google Scholar
  150. 150.
    K. A. Mikhailova, “The occurrence problem for direct products of groups,” Dokl. Akad. Nauk SSSR,119, 1103–1105 (1958); Mat. Sb.,70, No. 2, 241–251 (1966).Google Scholar
  151. 151.
    K. A. Mikhailova, “The occurrence problem for free products of groups,” Dokl. Akad. Nauk SSSR,127, No. 4, 746–748 (1959); Mat. Sb.,75(117), 199–210 (1968).Google Scholar
  152. 152.
    D. I. Moldavanskii, “Conjugacy of subgroups of a free group,” Algebra Logika,8, No. 6, 691–694 (1969).Google Scholar
  153. 153.
    D. I. Moldavanskii, “Conjugacy of subgroups of a free product,” Uch. Zap. Ivanov. Gos. Pedagog. Inst.,106, 123–135 (1972).Google Scholar
  154. 154.
    A. G. Myasnikov and V. N. Remeslennikov, “Isomorphisms and elementary properties of nilpotent powered groups,” Dokl. Akad. Nauk SSSR,258, No. 5, 1056–1059 (1981).Google Scholar
  155. 155.
    A. G. Myasnikov and V. N. Remeslennikov,” Formularity of the set of Mal'tsev bases and elementary theories of finite-dimensional algebras. I, II,” Sib. Mat. Zh.,23, No. 5, 152–167 (1982);24, No. 2, 97–113 (1983).Google Scholar
  156. 156.
    A. G. Myasnikov and V. N. Remeslennikov, “Isomorphisms and elementary properties of nilpotent powered groups,” in: Mathematical Logic and the Theory of Algorithms [in Russian], (Trudy Inst. Mat.), Nauka, Novosibirsk (1982), pp. 56–87.Google Scholar
  157. 157.
    N. M. Nagornyi, “An example of a group with nonrecursive center,” Z. Math. Log. Grundl. Math.,4, No. 4, 304–308 (1958).Google Scholar
  158. 158.
    A. I. Nekritsukhin, “Approximation of free groups with respect to conjugacy. I,” in: Semigroup Varieties and Semigroups of Endomorphisms [in Russian], Leningrad (1979), pp. 138–142.Google Scholar
  159. 159.
    A. I. Nekritsukhin, “Approximation of free groups with respect to conjugacy,” Mat. Zametki,29, No. 3, 381–385 (1981).Google Scholar
  160. 160.
    P. S. Novikov, “On the algorithmic unsolvability of the word problem,” Dokl. Akad. Nauk SSSR,85, No. 4, 709–712 (1952).Google Scholar
  161. 161.
    P. S. Novikov, “Unsolvability of the conjugacy problem in group theory,” Izv. Akad. Nauk SSSR, Ser. Mat.,18, No. 6, 485–524 (1954).Google Scholar
  162. 162.
    P. S. Novikov, “On the algorithmic unsolvability of the word problem in group theory,” Tr. Mat. Inst. Akad. Nauk SSSR,44, 3–143 (1955).Google Scholar
  163. 163.
    P. S. Novikov, “On the unsolvability of the word problem in a group and of some other problems of algebra,” Czech. Math. J.,6, No. 4, 450–454 (1956).Google Scholar
  164. 164.
    P. S. Novikov, Selected Works. Theory of Sets and Functions. Mathematical Logic and Algebra [in Russian], Nauka, Moscow (1979).Google Scholar
  165. 165.
    P. S. Novikov and S. I. Adyan, “The word problem for semigroups with one-sided cancellation,” Z. Math. Log. Grundl. Math.,4, No. 1, 66–88 (1958).Google Scholar
  166. 166.
    P. S. Novikov and S. I. Adyan, “Infinite periodic groups. I, II, III,” Izv. Akad. Nauk SSSR, Ser. Mat.,32, No. 1, 212–244, No. 2, 251–524, No. 3, 709–731 (1968).Google Scholar
  167. 167.
    P. S. Novikov and S. I. Adyan, “Defining relations and the word problem for free periodic groups of odd order,” Izv. Akad. Nauk SSSR, Ser. Mat.,32, No. 4, 971–979 (1968).Google Scholar
  168. 168.
    P. S. Novikov and S. I. Adyan, “Commutative subgroups and the conjugacy problem in free periodic groups of odd order,” Izv. Akad. Nauk SSSR, Ser. Mat.,32, No. 5, 1176–1190 (1968).Google Scholar
  169. 169.
    G. A. Noskov, “On the elementary theory of a finitely generated, almost solvable group,” in: Sixteenth Algebra Conference, Abstracts of Reports, Part I, Leningrad (1981), p. 118.Google Scholar
  170. 170.
    G. A. Noskov, “Conjugacy in metabelian groups,” Mat. Zametki,31, No. 4, 495–507 (1982).Google Scholar
  171. 171.
    G. A. Noskov, V. N. Remeslennikov, and V. A. Roman'kov, “Infinite groups,” in: Progress in Science and Engineering (Itogi Nauki i Tekhniki). Algebra. Topology. Geometry [in Russian], Vol. 17, VINITI (1979), pp. 65–157.Google Scholar
  172. 172.
    A. Yu. Ol'shanskii, “On the finite basis problem in groups,” Izv. Akad. Nauk SSSR, Ser. Mat.,34, No. 2, 376–384 (1970).Google Scholar
  173. 173.
    A. Yu. Ol'shanskii, “Infinite groups with cyclic subgroups,” Dokl. Akad. Nauk SSSR,245, No. 4, 785–787 (1979).Google Scholar
  174. 174.
    A. Yu. Ol'shanskii, “An infinite simple Noetherian group without torsion,” Izv. Akad. Nauk SSSR, Ser. Mat.,43, No. 6, 1328–1393 (1979).Google Scholar
  175. 175.
    A. Yu. Ol'shanskii, “An infinite group with subgroups of prime orders,” Izv. Akad. Nauk SSSR, Ser. Mat.,44, No. 2, 309–321 (1980).Google Scholar
  176. 176.
    R. D. Pavlov, “On the problem of recognizing group properties,” Mat. Zametki,10, No. 2, 169–180 (1971).Google Scholar
  177. 177.
    R. D. Pavlov, “Subgroups of a certain form in finitely presented groups,” Godishn. Sofiisk. Univ. Fak. Mat. Mekh., 1973–1974,68, 59–80 (1977).Google Scholar
  178. 178.
    R. D. Pavlov, “On the problem of recognizing group properties in bounded alphabets,” Serdika B lg. Mat. Spisanie,5, No. 3, 252–271 (1979).Google Scholar
  179. 179.
    R. D. Pavlov, “On the problem of recognizing homomorphisms of finitely presented groups,” Serdika B″lg. Mat. Spisanie,5, No. 4, 370–373 (1979).Google Scholar
  180. 180.
    M. Palasin'ski, “On the word and conjugacy problems for finitely presented groups,” Z. Math. Log. Grundl. Math.,26, No. 4, 311–326 (1980).Google Scholar
  181. 181.
    E. A. Palyutin, “A description of categorical quasivarieties,” Algebra Logika,14, No. 2, 145–185 (1975).Google Scholar
  182. 182.
    E. D. Rabinovich, “Maximal Abelian groups,” in: Questions in Group Theory [in Russian], Kemerovo (1980), pp. 42–53; VINITI No. 961-80.Google Scholar
  183. 183.
    V. N. Remeslennikov, “Conjugacy of subgroups in nilpotent groups,” Algebra Logika,6, No. 2, 61–76 (1967).Google Scholar
  184. 184.
    V. N. Remeslennikov, “Conjugacy in polycyclic groups,” Algebra Logika,8, No. 6, 712–725 (1969).Google Scholar
  185. 185.
    V. N. Remeslennikov, “Residual finiteness of groups with respect to conjugacy,” Sib. Mat. Zh.,12, No. 5, 1085–1099 (1971).Google Scholar
  186. 186.
    V. N. Remeslennikov, “An example of a group, finitely presented in the varietyU 3, with an unsolvable word problem,” Algebra Logika,12, No. 5, 577–602 (1973).Google Scholar
  187. 187.
    V. N. Remeslennikov, “On an algorithmic problem for nilpotent groups and rings,” in: Abstracts of reports, Sixth All-Union Symposium on Group Theory, Kiev (1978), pp. 50–51.Google Scholar
  188. 188.
    V. N. Remeslennikov, “On an algorithmic problem for nilpotent groups and rings,” Sib. Mat. Zh.,20, No. 5, 1077–1081 (1979).Google Scholar
  189. 189.
    V. N. Remeslennikov, “Nonstandard free products,” in: Abstracts of Reports, Seventh All-Union Symposium of Group Theory, Krasnoyarsk (1980), p. 97.Google Scholar
  190. 190.
    V. N. Remeslennikov and V. G. Sokolov, “Some properties of the Magnus embedding,” Algebra Logika,9, No. 5, 566–578 (1970).Google Scholar
  191. 191.
    N. S. Romanovskii, “Residual finiteness of free products with respect to occurrence,” Izv. Akad. Nauk SSSR, Ser. Mat.,33, No. 6, 1324–1329 (1969).Google Scholar
  192. 192.
    N. S. Romanovskii, “Some algorithmic problems for solvable groups,” Algebra Logika,13, No. 1, 26–34 (1974).Google Scholar
  193. 193.
    N. S. Romanovskii, “On the elementary theory of an almost polycyclic group,” Mat. Sb.,111, No. 1, 135–143 (1980).Google Scholar
  194. 194.
    N. S. Romanovskii, “The occurrence problem for extensions of Abelian groups by nilpotent groups,” Sib. Mat. Zh.,21, No. 2, 170–174 (1980).Google Scholar
  195. 195.
    N. S. Romanovskii, “The word problem for center-by-metabelian groups,” Sib. Mat. Zh.,23, No. 4, 201–205 (1982).Google Scholar
  196. 196.
    V. A. Roman'kov, “On the unsolvability of the endomorphic reducibility problem in free nilpotent groups and in free rings,” Algebra Logika,16, No. 4, 457–471 (1977).Google Scholar
  197. 197.
    V. A. Roman'kov, “Some algorithmic questions for solvable groups,” in: Abstracts of Reports, Sixth All-Union Symposium on Group Theory, Kiev (1978), p. 52.Google Scholar
  198. 198.
    V. A. Roman'kov, “Equations in free metabelian groups,” Sib. Mat. Zh.,20, No. 3, 671–673 (1979).Google Scholar
  199. 199.
    V. A. Roman'kov, “On the universal theory of nilpotent groups,” Mat. Zametki,25, No. 4, 487–495 (1979).Google Scholar
  200. 200.
    G. E. Sacks, Saturated Model Theory, W. A. Benjamin, Reading, Massachusetts (1972).Google Scholar
  201. 201.
    O. A. Sarkisyan, “The word and divisibility problems in semigroups and in groups without cycles,” Izv. Akad. Nauk SSSR, Ser. Mat.,45, No. 6, 1424–1440 (1981).Google Scholar
  202. 202.
    R. A. Sarkisyan, “Conjugacy in free polynilpotent groups,” Algebra Logika,11, No. 6, 694–710 (1972).Google Scholar
  203. 203.
    R. A. Sarkisyan, “An occurrence problem for adele groups,” Mat. Zametki,25, No. 1, 37–50 (1979).Google Scholar
  204. 204.
    R. A. Sarkisyan, “The conjugacy problem for sets of integral matrices,” Mat. Zametki,25, No. 6, 811–824 (1979).Google Scholar
  205. 205.
    R. A. Sarkisyan, “Galois cohomology and some questions in the theory of algorithms,” Mat. Sb.,111, No. 4, 579–609 (1980).Google Scholar
  206. 206.
    R. A. Sarkisyan, “Algorithmic questions for linear algebraic groups. I, II,” Mat. Sb.,113, No. 2, 179–216, No. 3, 400–436 (1980).Google Scholar
  207. 207.
    R. A. Sarkisyan, “A word problem for Galois cohomology,” Algebra Logika,19, No. 6, 707–725 (1980).Google Scholar
  208. 208.
    K. Seksenbaev, “Residual finiteness of a finite extension of a nilpotent group with respect to conjugacy,” Algebra Logika,6, No. 6, 29–31 (1967).Google Scholar
  209. 209.
    A. L. Semenov, “An interpretation of free algebras in free groups,” Dokl. Akad. Nauk SSSR,252, No. 6, 1329–1332 (1980).Google Scholar
  210. 210.
    A. M. Slobodskoi, “The universal theory of the group GL3(z),” in: Algorithmic Questions for Algebraic Systems and Computers [in Russian], Irkutsk (1979), pp. 200–217.Google Scholar
  211. 211.
    A. M. Slobodskoi, “Undecidability of the universal theory of finite groups,” Algebra Logika,20, No. 2, 207–230 (1981).Google Scholar
  212. 212.
    A. M. Slobodskoi and é. I. Fridman, “Theories of Abelian groups with predicates distinguishing subgroups,” Algebra Logika,14, No. 5, 572–575 (1975).Google Scholar
  213. 213.
    A. M. Slobodskoi and é. I. Fridman, “Undecidable universal theories of subgroup lattices of Abelian groups,” Algebra Logika,15, No. 2, 227–234 (1976).CrossRefGoogle Scholar
  214. 214.
    V. G. Sokolov, “A word equality algorithm for a class of solvable groups,” Sib. Mat. Zh.,12, No. 6, 1405–1410 (1971).Google Scholar
  215. 215.
    V. V. Soldatova, “Groups with a δ-basis with δ<1/4 and an additional condition,” Sib. Mat. Zh.,7, No. 3, 627–637 (1966).Google Scholar
  216. 216.
    V. V. Soldatova, “On a class of finitely presented groups,” Dokl. Akad. Nauk SSSR,172, No. 6, 1276–1277 (1967).Google Scholar
  217. 217.
    P. V. Stender, “Application of the sieve method to a solution of the word problem for certain groups with a countable set of generating elements and a countable set of defining relations,” Mat. Sb.,32, No. 1, 97–107 (1953).Google Scholar
  218. 218.
    M. A. Taitslin, “Elementary theories of subgroup lattices,” Algebra Logika,9, No. 4, 473–483 (1970).Google Scholar
  219. 219.
    V. A. Tartakovskii, “On a cancellation process,” Dokl. Akad. Nauk SSSR,58, 1605–1608 (1947).Google Scholar
  220. 220.
    V. A. Tartakovskii, “On the word problem for certain types of groups,” Dokl. Akad. Nauk SSSR,58, 1909–1910 (1947).Google Scholar
  221. 221.
    V. A. Tartakovskii, “Solution of the word problem for a group with a k-cancellable basis with k>6,” Izv. Akad. Nauk SSSR, Ser. Mat.,13, 483–494 (1949).Google Scholar
  222. 222.
    V. A. Tartakovskii, “The sieve method in group theory,” Mat. Sb.,25, 3–50 (1949).Google Scholar
  223. 223.
    V. A. Tartakovskii, “Application of the sieve method to a solution of the word problem in certain types of groups,” Mat. Sb.,25, 251–274 (1949).Google Scholar
  224. 224.
    V. A. Tartakovskii, “On primitive composition,” Mat. Sb.,30, 39–52 (1952).Google Scholar
  225. 225.
    Model Theory. A Reference Book on Mathematical Logic [Russian translation], Part I, Nauka, Moscow (1982).Google Scholar
  226. 226.
    E. I. Timoshenko, “Conjugacy in free metabelian groups,” Algebra Logika,6, No. 2, 89–94 (1967).Google Scholar
  227. 227.
    E. I. Timoshenko, “Preservation of elementary and universal equivalence for a wreath product,” Algebra Logika,7, No. 4, 114–119 (1968).Google Scholar
  228. 228.
    E. I. Timoshenko, “Some algorithmic questions for metabelian groups,” Algebra Logika,12, No. 2, 232–240 (1973).Google Scholar
  229. 229.
    E. I. Timoshenko, “Some elementary properties of wreath products,” Preprint, Novosibirsk Civil Engineering Institute, Novosibirsk (1977); VINITI No. 4360-77.Google Scholar
  230. 230.
    E. I. Timoshenko, “Elementary theories of wreath products,” in: Questions in Group Theory and Homological Algebra [in Russian], No. 2, Yaroslavl (1979), pp. 169–174.Google Scholar
  231. 231.
    M. Yu. Trofimov, “Definability in algebraically closed groups,” Algebra Logika,14, No. 3, 320–327 (1975).Google Scholar
  232. 232.
    D. K. Faddeev, “Equivalence of systems of integral matrices,” Izv. Akad. Nauk SSSR, Ser. Mat.,30, No. 2, 449–454 (1966).Google Scholar
  233. 233.
    D. S. Faermark, “An algorithm for establishing equality of words in a nilpotent product of groups presented by a finite number of generators and defining relations,” Dokl. Akad. Nauk SSSR,137, No. 2, 291–294 (1961).Google Scholar
  234. 234.
    V. I. Frenkel', “Algorithmic problems in partially ordered groups,” Usp. Mat. Nauk,17, No. 4, 173–179 (1962).Google Scholar
  235. 235.
    V. I. Frenkel', “Algorithmic problems in partially ordered groups,” Dokl. Akad. Nauk SSSR,152, No. 1, 67–70 (1963).Google Scholar
  236. 236.
    A. A. Fridman, “Relation between the word problem and the conjugacy problem in finitely presented groups,” Tr. Mosk. Mat. Obshch.,9, 329–356 (1960).Google Scholar
  237. 237.
    A. A. Fridman, “Degrees of unsolvability of the word problem in finitely presented groups,” Dokl. Akad. Nauk SSSR,147, No. 4, 805–808 (1962).Google Scholar
  238. 238.
    A. A. Fridman, Degrees of Unsolvability of the Word Problem for Finitely Presented Groups [in Russian], Nauka, Moscow (1967).Google Scholar
  239. 239.
    A. A. Fridman, “Solution of the conjugacy problem in a class of groups,” Tr. Mat. Inst. Akad. Nauk SSSR,133, 233–242 (1973).Google Scholar
  240. 240.
    é. I. Fridman, “Undecidability of the elementary theory of torsion-free Abelian groups with a finite set of pure subgroups,” in: Algebra [in Russian], No. 1, Irkutsk (1972), pp. 97–101.Google Scholar
  241. 241.
    é. I. Fridman, “Universal theories of subgroup lattices of groups,” in: Algorithmic Questions for Algebraic Systems and Computers [in Russian], Irkutsk (1979), pp. 172–176.Google Scholar
  242. 242.
    O. G. Kharlampovich, “A finitely presented solvable group with an unsolvable word problem,” Izv. Akad. Nauk SSSR, Ser. Mat.,45, No. 4, 854–873 (1981).Google Scholar
  243. 243.
    Yu. I. Khmelevskii, “Systems of equations in a free group. I, II,” Izv. Akad. Nauk SSSR, Ser. Mat.,35, No. 6, 1237–1268 (1971);36, No. 1, 110–179 (1972).Google Scholar
  244. 244.
    P. Hall, “Nilpotent groups,” Matematika. Period. Sb. Perevod. Inostr. Stat. (Collected Translations),12, No. 1, 3–36 (1968).Google Scholar
  245. 245.
    N. P. Shatrova, “An upper bound for the degree of complexity of an algorithm for solving the conjugacy problem for a certain class of groups,” in: Modern Algebra. Semigroup Constructions [in Russian], Leningrad (1981), pp. 105–127.Google Scholar
  246. 246.
    N. P. Shatrova, “An estimate of the degree of complexity of an algorithm for solving the word and conjugacy problems for a certain class of groups,” in: Algorithmic Problems of the Theory of Groups and Semigroups [in Russian], Tula (1981), pp. 3–20.Google Scholar
  247. 247.
    N. G. Shakhova, “Residual finiteness with respect to occurrence of certain HNN-extensions,” Vestn. Mosk. Gos. Univ., Mat. Mekh., No. 5, 57–62 (1981).Google Scholar
  248. 248.
    J. R. Shoenfield, Mathematical Logic, Addison-Wesley, Reading, Mass. (1967).Google Scholar
  249. 249.
    V. L. Shirvanyan, “The word problem for groups with a recursive set of defining relations of the form An=1,” Aikakan SSR Gitutyunneri Akad. Zekuitsner, Dokl. Akad. Nauk ArmSSR,71, No. 4, 193–197 (1980).Google Scholar
  250. 250.
    A. L. Shmel'kin, “Some factor groups of a free product,” Tr. Seminar, im. I. G. Petrovskogo. Mosk. Gos. Univ. (I. G. Petrovskii's Seminar, Moscow State Univ.), No. 5 (1979), pp. 208–216.Google Scholar
  251. 251.
    G. G. Shchepin, “The occurrence problem for a nilpotent product of finitely presented groups,” Dokl. Akad. Nauk SSSR,160, No. 2, 294–297 (1965).Google Scholar
  252. 252.
    G. G. Shchepin, “The occurrence problem in finitely presented groups,” Sib. Mat. Zh.,9, No. 2, 443–448 (1968).Google Scholar
  253. 253.
    G. G. Yabanzhi, “The word problem for certain groups in the variety N2A,” Bul. Akad. Shtiintse RSSMold., Izv. Akad. Nauk MoldSSR, Ser. Fiz.-Tekh. Mat. Nauk, No. 1, 39–44 (1981).Google Scholar
  254. 254.
    S. Aanderaa, “A proof of Higman's embedding theorem using Britton extensions of groups,” in: Word Problems, Decision Problems, and the Burnside Problem in Group Theory, Amsterdam-London (1973), pp. 1–18.Google Scholar
  255. 255.
    S. Aanderaa and D. E. Cohen, “Modular machines, the word problem for finitely presented groups and Collins' theorem,” in: Word Problems II, North-Holland, Amsterdam-New York-Oxford (1980), pp. 1–16.Google Scholar
  256. 256.
    S. Aanderaa and D. E. Cohen, “Modular machines and the Higman-Clapham-Valiev embedding theorem,” in: Word Problems II, North-Holland, Amsterdam-New York-Oxford (1980), pp. 17–28.Google Scholar
  257. 257.
    S. I. Adyan (Adian), “On the word problem for groups defined by periodic relations,” in: Lecture Notes in Mathematics, Vol. 806, Springer-Verlag (1980), pp. 41–46.Google Scholar
  258. 258.
    S. I. Adyan (Adian), “Classifications of periodic words and their application in group theory,” in: Lecture Notes in Mathematics, Vol. 806, Springer-Verlag (1980), pp. 1–40.Google Scholar
  259. 259.
    M. Anshel, “The conjugacy problem for HNN groups and the word problem for commutative semigroups,” Proc. Am. Math. Soc.,61, No. 2, 223–224 (1976).Google Scholar
  260. 260.
    M. Anshel, “Vector groups and the equality problem for vector addition systems,” Math. Comput.,32, No. 142, 614–616 (1978).Google Scholar
  261. 261.
    M. Anshel, “Decision problems for HNN groups and commutative semigroups,” Houston J. Math.,4, No. 2, 137–142 (1978).Google Scholar
  262. 262.
    M. Anshel and P. Stebe, “The solvability of the conjugacy problem for certain HNN groups,” Bull. Am. Math. Soc.,80, No. 2, 266–270 (1974).Google Scholar
  263. 263.
    M. Anshel and P. Stebe, “Conjugate powers in free products with amalgamation,” Houston J. Math.,2, No. 2, 139–147 (1976).Google Scholar
  264. 264.
    K. I. Appel and P. E. Schupp, “The conjugacy problem for the group of any tame alternating knot is solvable,” Proc. Am. Math. Soc.,33, No. 2, 329–336 (1972).Google Scholar
  265. 265.
    H. Applegate and H. Onishi, “Continued fractions and the conjugacy problem in SL2(Z),” Commun. Algebra,9, No. 11, 1121–1130 (1981).Google Scholar
  266. 266.
    J. Avenhaus and K. Madlener, “KomplexitÄtsuntersuchungen für Einrelatorgruppen,” Z. Angew. Math. Mech.,57, No. 5, T313-T314 (1977).Google Scholar
  267. 267.
    J. Avenhaus and K. Madlener, “KomplexitÄt bei Gruppen: Der Einbettungssatz von Higman,” Z. Angew. Math. Mech.,51, No. 5, T314-T315 (1977).Google Scholar
  268. 268.
    J. Avenhaus and K. Madlener, “Sub rekursive KomplexitÄt bei Gruppen,” Acta Inf.,9, No. 1, 87–104 (1977).Google Scholar
  269. 269.
    J. Avenhaus and K. Madlener, “Subrekursive KomplexitÄt bei Gruppen. II. Der Einbettungssatz von Higman für entscheidbare Gruppen,” Acta Inf.,9, No. 2, 183–193 (1978).CrossRefGoogle Scholar
  270. 270.
    J. Avenhaus and K. Madlener, “String matching and algorithmic problems in free groups,” Rev. Colomb. Mat.,14, No. 1, 1–15 (1980).Google Scholar
  271. 271.
    J. Avenhaus and K. Madlener, “An algorithm for the word problem in HNN extensions and the dependence of its complexity on the group representation,” RAIRO. Inf. Théor.,15, No. 4, 355–371 (1981).Google Scholar
  272. 272.
    J. Avenhaus and K. Madlener, “How to compute generations for the intersection of subgroups in free groups,” in: Lecture Notes in Computer Science, Vol. 112 (1981), pp. 88–100.Google Scholar
  273. 273.
    J. T. Baldwin, “Stability theory and algebra,” J. Symbol. Log.,44, No. 4, 599–608 (1979).Google Scholar
  274. 274.
    J. T. Baldwin and J. Saxl, “Logical stability in group theory,” J. Austral. Math. Soc.,21, No. 3, 267–276 (1976).Google Scholar
  275. 275.
    S. A. Basarab, “On the elementary theories of Abelian profinite groups and Abelian torsion groups,” Rev. Roum. Math. Pures Appl.,22, No. 3, 299–309 (1977).Google Scholar
  276. 276.
    A. Baudisch, “Theorien abelscher Gruppen mit einem einstellungen PrÄdikat,” Fund. Math.,83, No. 2, 121–127 (1974).Google Scholar
  277. 277.
    A. Baudisch, “Die elementare Theorie der Gruppen vom Typ p mit Untergruppen,” Z. Math. Log. Grundl. Math.,21, No. 4, 347–352 (1975).Google Scholar
  278. 278.
    A. Baudisch, “A note on the elementary theory of torsion-free Abelian groups with one predicate for subgroups,” Wiss. Humboldt-Univ. Berlin. Math.-Natur. Wiss. R.,26, No. 5, 611–612 (1977).Google Scholar
  279. 279.
    A. Baudisch, “Application of the theorem of širšov-Witt in the theory of groups and Lie algebras. Addendum,” Prepr. Akad. Wiss. DDR. Zentralinst. Math. und Mech., No. 30 (1980).Google Scholar
  280. 280.
    A. Baudisch, “The elementary theory of Abelian groups with m-chains of pure subgroups,” Prepr. Akad. Wiss. DDR. Zentralinst. Math. und Mech., No. 5, 1–26 (1979).Google Scholar
  281. 281.
    A. Baudisch, “The elementary theory of Abelian groups with m-chains of pure subgroups,” Fund. Math.,112, No. 2, 148–157 (1981).Google Scholar
  282. 282.
    G. Baumslag, W. W. Boone, and B. H. Neumann, “Some unsolvable problems about elements and subgroups of groups,” Math. Scand.,7, No. 1, 191–201 (1959).Google Scholar
  283. 283.
    G. Baumslag, F. B. Cannonito, and C. F. Miller, III, “Infinitely generated subgroups of finitely presented groups. I,” Math. Z.,153, No. 2, 117–134 (1977).Google Scholar
  284. 284.
    G. Baumslag, F. B. Cannonito, and C. F. Miller, III, “Infinitely generated subgroups of finitely presented groups. Part II,” Math. Z.,172, No. 2, 97–105 (1980).CrossRefGoogle Scholar
  285. 285.
    G. Baumslag, F. B. Cannonito, and C. F. Miller, III, “Some recognizable properties of solvable groups,” Math. Z.,178, No. 3, 289–295 (1981).CrossRefGoogle Scholar
  286. 286.
    G. Bamslag, F. B. Cannonito, and C. F. Miller, III, “Computable algebra and group embeddings,” J. Algebra,69, No. 1, 186–212 (1981).CrossRefGoogle Scholar
  287. 287.
    G. Baumslag and F. Levin, “Algebraically closed torsion-free nilpotent groups of class 2,” Commun. Algebra,4, 533–560 (1976).Google Scholar
  288. 288.
    W. Baur, “Undecidability of the theory of Abelian groups with a subgroup,” Proc. Am. Math. Soc.,55, No. 1, 125–128 (1976).Google Scholar
  289. 289.
    W. Baur, “Decidability and undecidability of theories of Abelian groups with predicates for subgroups,” Compos. Math.,31, No. 1, 23–30 (1975).Google Scholar
  290. 290.
    W. Baur, G. Cherlin, and A. Macintyre, “Totally categorical groups and rings,” J. Algebra,57, No. 2, 407–440 (1979).CrossRefGoogle Scholar
  291. 291.
    D. Berthier, “Stability of non-model-complete theories: products, groups,” J. London Math. Soc.,11, No. 4, 453–464 (1975).Google Scholar
  292. 292.
    R. Bieri and R. Strebel, “Valuations and finitely prsented metabelian groups,” Proc. London Math. Soc.,41, No. 3, 439–464 (1980).Google Scholar
  293. 293.
    N. Blackburn, “Conjugacy in nilpotent groups,” Proc. Am. Math. Soc.,16, No. 1, 143–148 (1965).Google Scholar
  294. 294.
    J. Boler, “Conjugacy in Abelian-by-cyclic groups,” Proc. Am. Math. Soc.,55, No. 1, 17–21 (1976).Google Scholar
  295. 295.
    W. W. Boone, “Certain simple, unsolvable problems of group theory,” Proc. Kon. Ned. Akad. Wetensch.,A57, No. 3, 231–237, No. 5, 492–497 (1954);A58, No. 2, 252–256, No. 5, 571–577 (1955); Indag. Math.,16, No. 3, 231–237, No. 5, 492–497 (1954);17, No. 2, 252–256, No. 5, 571–577 (1955).Google Scholar
  296. 296.
    W. W. Boone, “Certain simple, unsolvable problems of group theory. V, VI,” Proc. Kon. Ned. Akad. Wetensch.,A60, No. 1, 22–27, No. 2, 227–232 (1957); Indag. Math.,19, No. 1, 22–27, No. 2, 227–232 (1957).Google Scholar
  297. 297.
    W. W. Boone, “The word problem,” Proc. Nat. Acad. Sci. U.S.A.,44, No. 10, 1061–1065 (1958).Google Scholar
  298. 298.
    W. W. Boone, “The word problem,” Ann. Math.,70, No. 2, 207–265 (1959).Google Scholar
  299. 299.
    W. W. Boone, “Partial results regarding word problems and recursively enumerable degrees of unsolvability, “Bull. Am. Math. Soc.,68, No. 6, 616–623 (1962).Google Scholar
  300. 300.
    W. W. Boone, “Finitely presented group whose word problem has the same degree as that of an arbitrarily given Thue system (an application of methods of Britton),” Proc. Nat. Acad. Sci. U.S.A.,53, No. 2, 265–269 (1965).Google Scholar
  301. 301.
    W. W. Boone, “Word problems and recursively enumerable degrees of unsolvability. A sequel on finitely presented groups,” Ann. Math.,84, No. 1, 49–84 (1966).Google Scholar
  302. 302.
    W. W. Boone, “Decision problems about algebraic and logical systems as a whose and recursively enumerable degrees of unsolvability,” in: Contributions to Mathematical Logic (Colloquium, Hannover, 1966), North-Holland, Amsterdam (1968), pp. 13–33.Google Scholar
  303. 303.
    W. W. Boone, “Word problems and recursively enumerable degrees of unsolvability. An emendation,” Ann. Math.,94, No. 3, 389–391 (1971).Google Scholar
  304. 304.
    W. W. Boone, W. Haken, and V. Poenaru, “On recursively unsolvable problems in topology and their classification,” in: Contributions to Mathematical Logic, North-Holland, Amsterdam (1968), pp. 37–74.Google Scholar
  305. 305.
    W. W. Boone and G. Higman, “An algebraic characterization of groups with soluble word problem,” J. Austral. Math. Soc.,18, No. 1, 41–53 (1974).Google Scholar
  306. 306.
    W. W. Boone and H. Rogers, Jr., “On a problem of J.H.C. Whitehead and a problem of Alonzo Church,” Math. Scad.,19, No. 2, 185–192 (1966).Google Scholar
  307. 307.
    Y. Boydron, “Conjugaison des sous-groupes d'un group libre,” C. R. Acad. Sci.,276, No. 22, A1447-A1448 (1973).Google Scholar
  308. 308.
    Y. Boydron, “Algorithmes dans les produits libres,” C. R. Acad. Sci.,282, No. 3, A135-A138 (1976).Google Scholar
  309. 309.
    Y. Boydron and B. Truffault, “Problème de l'ordre généralesé pour les groupes libres,” C. R. Acad. Sci.,A279, No. 25, 843–845 (1974).Google Scholar
  310. 310.
    Y. Boydron and B. Truffault, “Classes doubles dans un groupe libre,” C. R. Acad. Sci.,A279, No. 21, 773–775 (1974).Google Scholar
  311. 311.
    N. B. BoŽović, “A note on a generalization of some undecidability results in group theory,” Publ. Inst. Math.,26, 61–63 (1979).Google Scholar
  312. 312.
    N. B. BoŽović, “On some classes of unrecognizable properties of groups,” Publ. Inst. Math.,26, 65–68 (1979).Google Scholar
  313. 313.
    T. R. Brahana, “On the isomorphism problem for finitely generated torsion-free class 2 nilpotent groups,” Glas. Mat.,7, No. 2, 167–172 (1972).Google Scholar
  314. 314.
    E. Brieskorn and K. Saito, “Artin-Gruppen und Coxeter-Gruppen,” Invent. Math.,17, No. 4, 245–271 (1972).CrossRefGoogle Scholar
  315. 315.
    R. C. Brightman, “On the isomorphism problem for just-infinite groups,” Commun. Pure Appl. Math.,24, No. 6, 789–796 (1971).Google Scholar
  316. 316.
    J. L. Britton, “Solution of the word problem for certain types of groups. I, II,” Proc. Glasgow Math. Asso.,3, No. 1, 45–54, No. 2, 68–90 (1956).Google Scholar
  317. 317.
    J. L. Britton, “The word problem for groups,” Proc. London Math. Soc.,8, No. 32, 493–506 (1958).Google Scholar
  318. 318.
    J. L. Britton, “The word problem,” Ann. Math.,77, No. 1, 16–32 (1963).Google Scholar
  319. 319.
    J. L. Britton, “On the conjugacy problem and difference equations,” J. London Math. Soc.,17, No. 2, 240–250 (1978).Google Scholar
  320. 320.
    J. L. Britton, “The conjugacy problem for an HNN extension of an Abelian group,” Math. Sci.,4, No. 2, 85–92 (1979).Google Scholar
  321. 321.
    R. M. Bryant and J. R. J. Groves, “Wreath products and ultraproducts of groups,” Q. J. Math.,29, No. 115, 301–308 (1978).Google Scholar
  322. 322.
    R. G. Burns, “On finitely generated subgroups of free products,” J. Austral. Math. Soc.,12, No. 3, 358–364 (1971).Google Scholar
  323. 323.
    W. Buszkowski, “Undecidability of the theory of lattice-orderable groups,” Funct. et Approx. (PRL),7, 23–28 (1979).Google Scholar
  324. 324.
    F. B. Cannonito, “The algebraic invariance of the word problem in groups,” in: Word Problems, Decision Problems, and the Burnside Problem in Group Theory, Amsterdam-London (1973), pp. 348–364.Google Scholar
  325. 325.
    F. B. Cannonito, “Two decidable Markov properties over a class of solvable groups,” Algebra Logika,19, No. 6, 646–658 (1980).Google Scholar
  326. 326.
    F. B. Cannonito and R. W. Gatterdam, “The computability of group constructions. Part I,” in: Word Problems, Decision Problems, and the Burnside Problem in Group Theory, Amsterdam-London (1973), pp. 365–400.Google Scholar
  327. 327.
    F. B. Cannonito and R. W. Gatterdam, “The word problem in polycyclic groups is elementary,” Compos. Math.,27, No. 1, 39–45 (1973).Google Scholar
  328. 328.
    F. B. Cannonito and R. W. Gatterdam, “The word problem and power problem in 1-relator groups are primitive recursive,” Pac. J. Math.,61, No. 2, 351–359 (1975).Google Scholar
  329. 329.
    G. Cherlin, Model-Theoretic Algebra. Selected Topics, Lecture Notes in Mathematics, Vol. 521, Springer-Verlag (1976).Google Scholar
  330. 330.
    G. Cherlin, “Groups of small Morley rank,” Ann. Math. Log., Nos. 1–2, 1–28 (1979).CrossRefGoogle Scholar
  331. 331.
    G. Cherlin and J. G. Rosenstein, “On categorical Abelian-by-finite groups,” J. Algebra,53, No. 1, 188–226 (1978).CrossRefGoogle Scholar
  332. 332.
    G. Cherlin and S. Shelah, “Superstable fields and groups,” Ann. Math. Log.,18, No. 3, 227–270 (1980).CrossRefGoogle Scholar
  333. 333.
    E. Chiti, “Modelli saturati per particolari teorie di gruppi abeliani ordinati,” Boll. Unione Mat. Ital.,2, Suppl., 145–155 (1980).Google Scholar
  334. 334.
    C. R. J. Clapham, “Finitely presented groups with word problems of arbitrary degrees of insolubility,” Proc. London Math. Soc.,14, No. 56, 633–676 (1964).Google Scholar
  335. 335.
    C. R. J. Clapham, “An embedding theorem for finitely generated groups,” Proc. London Math. Soc.,17, No. 3, 419–430 (1967).Google Scholar
  336. 336.
    C. R. J. Clapham, “The conjugacy problem for a free product with an amalgamation,” Arch. Math.,22, No. 4, 358–362 (1971).CrossRefGoogle Scholar
  337. 337.
    F. Clare, “Operations on elementary classes of groups,” Algebra Univ.,5, No. 1, 120–124 (1975).Google Scholar
  338. 338.
    A. Cobham, “Undecidability in group theory,” Not. Am. Math. Soc.,9, 406 (1962).Google Scholar
  339. 339.
    W. H. Cockcroft, “The word problem in a group extension,” Q. J. Math., Oxford Second Ser.,2, 123–134 (1951).Google Scholar
  340. 340.
    D. E. Cohen, Combinatorial Group Theory. A Topological Approach, Queen Mary College (Univ. of London), London (1978).Google Scholar
  341. 341.
    D. J. Collins, “On embedding groups and the conjugacy problem,” J. London Math. Soc.,1, No. 4, 674–682 (1969).Google Scholar
  342. 342.
    D. J. Collins, “Word and conjugacy problems in groups with only a few defining relations,” Z. Math. Log. Grundl. Math.,15, No. 4, 305–324 (1969).Google Scholar
  343. 343.
    D. J. Collins, “Recursively enumerable degrees and the conjugacy problem,” Acta Math.,122, Nos. 1–2, 115–160 (1969).Google Scholar
  344. 344.
    D. J. Collins, “On recognising Hopf groups,” Arch. Math.,20, No. 3, 235–240 (1969).CrossRefGoogle Scholar
  345. 345.
    D. J. Collins, “On recognising properties of groups which have solvable word problem,” Arch. Math.,21, No. 1, 31–39 (1970).CrossRefGoogle Scholar
  346. 346.
    D. J. Collins, “Truth-table degrees and the Boone groups,” Ann. Math.,94, No. 3, 392–396 (1971).Google Scholar
  347. 347.
    D. J. Collins, “The word, power and order problems in finitely presented groups,” in: Word Problems, Decision Problems, and the Burnside Problem in Group Theory, Amsterdam-London (1973), pp. 401–420.Google Scholar
  348. 348.
    D. J. Collins, “Conjugacy and the Higman embedding theorem,” in: Word Problems II, North-Holland, Amsterdam-New York-Oxford (1980), pp. 81–85.Google Scholar
  349. 349.
    D. J. Collins and C. F. Miller, III, “The conjugacy problem and subgroups of finite index,” Proc. London Math. Soc.,34, No. 3, 535–556 (1977).Google Scholar
  350. 350.
    L. P. Comerford, Jr., “Powers and conjugacy in small cancellation groups,” Arch. Math.,26, No. 4, 353–360 (1975).CrossRefGoogle Scholar
  351. 351.
    L. P. Comerford, Jr., “A note on power-conjugacy,” Houston J. Math.,3, No. 3, 337–341 (1977).Google Scholar
  352. 352.
    L. P. Comerford, Jr., “Subgroups of small cancellation groups,” J. London Math. Soc.,17, No. 3, 422–424 (1978).Google Scholar
  353. 353.
    L. P. Comerford, Jr., “Quadratic equations over small cancellation groups,” J. Algebra,69, No. 1, 175–185 (1981).CrossRefGoogle Scholar
  354. 354.
    L. P. Comerford, Jr. and C. C. Edmunds, “Quadratic equations over free groups and free products,” J. Algebra,68, No. 2, 276–297 (1981).CrossRefGoogle Scholar
  355. 355.
    L. P. Comerford, Jr. and B. Truffault, “The conjugacy problem for free products of sixth-groups with cyclic amalgamation,” Math. Z.,149, No. 2, 169–181 (1976).CrossRefGoogle Scholar
  356. 356.
    M. Dehn, “über die Topologie des dreidimensional Raumes,” Math. Ann.,69, 137–168 (1910).CrossRefMathSciNetGoogle Scholar
  357. 357.
    R. Deissler, “Minimal and prime models of complete theories of torsion-free Abelian groups,” Algebra Univ.,9, No. 2, 250–265 (1979).Google Scholar
  358. 358.
    Do Long Van, “Problèmes des mots et de conjugaison pour une classe de groupes de présentation finie,” C. R. Acad. Sci., Sér. 1,292, No. 17, 773–776 (1981).Google Scholar
  359. 359.
    M. J. Dugopolski, “A new solution to the word problem in the fundamental groups of alternating knots and links,” Trans. Am. Math. Soc.,272, No. 1, 375–382 (1982).Google Scholar
  360. 360.
    J. L. Dyer, “Separating conjugates in free-by-finite groups,” J. London Math. Soc.,20, No. 2, 215–221 (1979).Google Scholar
  361. 361.
    J. L. Dyer, “Separating conjugates in amalgamated free products and HNN-extensions,” J. Austral. Math. Soc.,A29, No. 1, 35–51 (1980).Google Scholar
  362. 362.
    V. H. Dyson, “The word problem and residually finite groups,” Not. Am. Math. Soc.,11, 743 (1964).Google Scholar
  363. 363.
    C. C. Edmunds, “A condition equivalent to the solvability of the endomorphism problem for free groups,” Proc. Am. Math. Soc.,76, No. 1, 23–24 (1979).Google Scholar
  364. 364.
    C. C. Edmunds, “On the endomorphism problem for free groups. II,” Proc. London Math. Soc.,38, No. 1, 153–168 (1979).Google Scholar
  365. 365.
    P. C. Eklof, “Some model theory for Abelian groups,” J. Symbol. Log.,37, No. 2, 335–342 (1972).Google Scholar
  366. 366.
    P. C. Eklof, “Methods of logic in Abelian group theory,” in: Lecture Notes in Mathematics, Vol. 616, Springer-Verlag (1977), pp. 251–269.Google Scholar
  367. 367.
    P. C. Eklof and E. R. Fischer, “The elementary theory of Abelian groups,” Ann. Math. Log.,4, No. 2, 115–171 (1972).CrossRefGoogle Scholar
  368. 368.
    P. C. Eklof and G. Sabbagh, “Model-completions and modules,” Ann. Math. Log.,2, No. 3, 251–295 (1970).CrossRefGoogle Scholar
  369. 369.
    Yu. L. Ershov, “Theories of non-Abelian varieties of groups,” in: Proceedings of the Tarski Symposium, Berkeley, California, 1971 (Proc. Symp. Pure Math., Vol. 25), Providence, R.I. (1974), pp. 255–264.Google Scholar
  370. 370.
    B. Evans, “A class of πc-groups closed under cyclic amalgamations,” Bull. Am. Math. Soc.,79, No. 1, 200–201 (1973).Google Scholar
  371. 371.
    B. Evans, “Word problems,” Bull. Am. Math. Soc.,84, No. 5, 789–802 (1978).Google Scholar
  372. 372.
    U. Felgner, “On categorical extraspecial p-groups,” Log. Anal.,18, Nos. 71–72, 407–498 (1975).Google Scholar
  373. 373.
    U. Felgner, “Stability and categoricity of non-Abelian groups,” in: Colloquium, Oxford, 1976, North-Holland, Amsterdam (1977), pp. 301–324.Google Scholar
  374. 374.
    U. Felgner, “Categorical stable groups,” Math. Z.,160, No. 1, 27–49 (1978).CrossRefGoogle Scholar
  375. 375.
    U. Felgner, “KategorizitÄt, ” Jahresber. Deutsch. Math.-Ver.,82, No. 1, 12–32 (1980).Google Scholar
  376. 376.
    U. Felgner, “The model theory of FC-groups, ” in: Math. Logic Lat. Am., Proc. Fourth Lat. Am. Symp., Santiago, Dec. 18–22, 1978, Amsterdam (1980), pp. 163–190.Google Scholar
  377. 377.
    U. Felgner, “Horn-theories of Abelian groups,” in: Lecture Notes in Mathematics, Vol. 834, Springer-Verlag (1980), pp. 163–173.Google Scholar
  378. 378.
    H. Finkelstein, “Solving equations in groups: a survey of Frobenius' theorem,” Period. Math. Hung.,9, No. 3, 187–204 (1978).CrossRefGoogle Scholar
  379. 379.
    E. Formanek, “Conjugacy separability in polycyclic groups,” J. Algebra,42, No. 1, 1–10 (1976).CrossRefGoogle Scholar
  380. 380.
    A. M. Gaglione and N. V. Waldinger, “A generalization of the bracketing process applied in the commutator calculus,” Commun. Algebra,8, No. 10, 961–981 (1960).Google Scholar
  381. 381.
    R. W. Gatterdam, “The Higman theorem for primitive recursive groups — a preliminary report,” in: Word Problems, Decision Problems and the Burnside Problem in Group Theory, Amsterdam-London (1973), pp. 421–425.Google Scholar
  382. 382.
    A. M. W. Glass and K. R. Pierce, “Existentially complete Abelian lattice-ordered groups,” Trans. Am. Math. Soc.,261, No. 1, 255–270 (1980).Google Scholar
  383. 383.
    A. M. W. Glass and K. R. Pierce, “Existentially complete lattice-ordered groups,” Israel J. Math.,36, Nos. 3–4, 257–272 (1980).Google Scholar
  384. 384.
    M. Greendlinger, “On Dehn's algorithms for the conjugacy and word problems, with applications,” Commun. Pure Appl. Math.,13, No. 4, 641–677 (1960).Google Scholar
  385. 385.
    M. Greendlinger, “Dehn's algorithm for the word problem,” Commun. Pure Appl. Math.,13, No. 1, 67–83 (1960).Google Scholar
  386. 386.
    M. Greendlinger, “An analogue of a theorem of Magnus,” Arch. Math.,12, No. 2, 94–96 (1961).CrossRefGoogle Scholar
  387. 387.
    M. Greendlinger, “A class of groups all of whose elements have trivial centralizers, ” Math. Z.,78, No. 1, 91–96 (1962).CrossRefGoogle Scholar
  388. 388.
    F. Grunewald, “Solution of the conjugacy problem in certain arithmetic groups,” in: Word Problems II, North-Holland, Amsterdam (1979), pp. 101–139.Google Scholar
  389. 389.
    F. Grunewald and D. Segal, “A note on arithmetic groups,” Bull. London Math. Soc.,10, No. 3, 297–302 (1978).Google Scholar
  390. 390.
    F. Grunewald and D. Segal, “Conjugacy in polycyclic groups,” Commun. Algebra,6, No. 8, 775–798 (1978).Google Scholar
  391. 391.
    F. Grunewald and D. Segal, “The solubility of certain decision problems in arithmetic and algebra,” Bull. Am. Math. Soc. (New Series),1, No. 6, 915–918 (1979).Google Scholar
  392. 392.
    F. Grunewald and D. Segal, “Some general algorithms. I. Arithmetic groups. II. Nilpotent groups,” Ann. Math.,112, No. 3, 531–583, 585–617 (1980).Google Scholar
  393. 393.
    C. K. Gupta, “On the conjugacy problem for F/R∼,” Proc. Am. Math. Soc.,85, No. 2, 149–153 (1982).Google Scholar
  394. 394.
    C. K. Gupta and N. D. Gupta, “Generalized Magnus embeddings and some applications,” Math. Z.,160, No. 1, 75–87 (1978).CrossRefGoogle Scholar
  395. 395.
    W. Haken, “Zun IdentitÄtsproblem bei Gruppen,” Math. Z.,56, 335–362 (1952).CrossRefGoogle Scholar
  396. 396.
    W. Haken, “Theorie der NormalflÄchen. Ein Isotopiekriterium für den Kreisknoten,” Acta Math.,105, Nos. 3–4, 245–375 (1961).Google Scholar
  397. 397.
    H. Heineken and P. M. Neumann, “Identical relations and decision procedures for groups,” J. Austral. Math. Soc.,7, No. 1, 39–47 (1967).Google Scholar
  398. 398.
    G. Hemion, “On the classification of homeomorphisms of 2-manifolds and the classifica- tion of 3-manifolds,” Acta Math.,142, Nos. 1–3, 123–155 (1979).Google Scholar
  399. 399.
    P. J. Higgins and R. C. Lyndon, “Equivalence of elements under automorphisms of a free group,” J. London Math. Soc.,8, No. 2, 254–258 (1974).Google Scholar
  400. 400.
    P. Higman, “Subgroups of finitely presented groups,” Proc. R. Soc. London,A262, No. 1311, 455–475 (1961).Google Scholar
  401. 401.
    P. Hilton and J. Roitberg, “Profinite completion and generalizations of a theorem of Blackburn,” J. Algebra,60, No. 1, 289–306 (1979).CrossRefGoogle Scholar
  402. 402.
    J. Hirschfeld and W. H. Wheeler, Forcing, Arithmetic, Division Rings, Lecture Notes in Mathematics, Vol. 454, Springer-Verlag (1975).Google Scholar
  403. 403.
    W. C. Holland and S. H. McCleary, “Solvability of the word problem in free lattice-ordered groups,” Houston J. Math.,5, No. 1, 99–105 (1979).Google Scholar
  404. 404.
    K. J. Horadam, “A quick test for nonisomorphism of one-relator groups,” Proc. Am. Math. Soc.,81, No. 2, 195–200 (1981).Google Scholar
  405. 405.
    V. Huber-Dyson, “An inductive theory for free products of groups,” Algebra Univers.,9, No. 1, 35–44 (1979).Google Scholar
  406. 406.
    V. Huber-Dyson, “A reduction of the open sentence problem for finite groups,” Bull. London Math. Soc.,13, No. 4, 331–338 (1981).Google Scholar
  407. 407.
    B. Hurley, “A note on the word problem for groups,” Q. J. Math.,31, No. 123, 329–334 (1980).Google Scholar
  408. 408.
    R. D. Hurwitz, “On the conjugacy problem in a free product with commuting subgroups,” Math. Ann.,221, No. 1, 1–8 (1976).CrossRefMathSciNetGoogle Scholar
  409. 409.
    R. D. Hurwitz, “On cyclic subgroups and the conjugacy problem,” Proc. Am. Math. Soc.,79, No. 1, 1–8 (1980).Google Scholar
  410. 410.
    W. Jaco, Lectures on Three-Manifold Topology, American Mathematical Society, Providence, R.I. (1980).Google Scholar
  411. 411.
    P. Jaffard, “Théorie axiomatique des groupes par des systèmes de générateurs,” Bull. Sci. Math., (2)75, 114–128 (1951).Google Scholar
  412. 412.
    C. G. Jockusch, Jr., “Supplement to Boone's ‘Algebraic systems’,” in: Contributions to Mathematical Logic (Colloquium, Hannover, 1966), North-Holland, Amsterdam (1968), pp. 34–36.Google Scholar
  413. 413.
    C. G. Jockusch, Jr., “Fine degrees of word problems of cancellation semigroups,” Z. Math. Log. Grundl. Math. Log. Grundl. Math.,26, No. 1, 93–95 (1980).Google Scholar
  414. 414.
    D. L. Johnson, Topics in the Theory of Group Presentations, London Math. Soc. Lecture Notes Series, No. 42 (1980).Google Scholar
  415. 415.
    K. A. Kalorkoti, “Decision problems in group theory,” Proc. London Math. Soc.,44, No. 2, 312–332 (1982).Google Scholar
  416. 416.
    M. I. Kargapolov, “Some questions in the theory of soluble groups,” in: Lecture Notes in Mathematics, Vol. 372, Springer-Verlag (1974), pp. 389–394.Google Scholar
  417. 417.
    Y. Komori, “Completeness of the theories on ordered Abelian groups and embedding relations,” Nagoya Math. J.,77, 33–39 (1980).Google Scholar
  418. 418.
    L. Larsen, “The solvability of the conjugacy problem for certain free products with amalgamation,” J. Algebra,43, No. 1, 28–41 (1976).CrossRefGoogle Scholar
  419. 419.
    L. Larsen, “The conjugacy problem and cyclic HNN constructions,” J. Austral. Math. Soc.,A23, No. 4, 385–401 (1977).Google Scholar
  420. 420.
    L. Larsen, “Decision problems and minimal identities in groups,” Scr. Agder Distriktshogsk. Fagsek. Mat., No. 1 (1979).Google Scholar
  421. 421.
    D. Lazard, “Algorithmes fondamentaux en algèbre commutative,” Astérisque, Nos. 38–39, 131–138 (1976).Google Scholar
  422. 422.
    T. Lewin, “On roots in free groups,” Michigan Math. J.,27, No. 1, 31–38 (1980).CrossRefGoogle Scholar
  423. 423.
    S. Lipschutz, “Elements in S-groups with trivial centralizers, ” Commun. Pure Appl. Math.,13, No. 4, 679–683 (1960).Google Scholar
  424. 424.
    S. Lipschutz, “On powers of elements in S-groups,” Proc. Am. Math. Soc.,13, No. 2, 181–186 (1962).Google Scholar
  425. 425.
    S. Lipschutz, “On square roots in eighth-groups,” Commun. Pure Appl. Math.,15, No. 1, 39–43 (1962).Google Scholar
  426. 426.
    S. Lipschutz, “An extension of Greendlinger's results on the word problem,” Proc. Am. Math. Soc.,15, No. 1, 37–43 (1964).Google Scholar
  427. 427.
    S. Lipschutz, “Powers in eighth-groups,” Proc. Am. Math. Soc.,16, No. 5, 1105–1106 (1965).Google Scholar
  428. 428.
    S. Lipschutz, “Generalization of Dehn's result on the conjugacy problem,” Proc. Am. Math. Soc.,17, No. 3, 759–762 (1966).Google Scholar
  429. 429.
    S. Lipschutz, “On powers in generalized free products of groups,” Arch. Math.,19, No. 6, 575–576 (1969).CrossRefGoogle Scholar
  430. 430.
    S. Lipschutz, “On the conjugacy problem and Greendlinger's eighth-groups,” Proc. Am. Math. Soc.,23, No. 1, 101–106 (1969).Google Scholar
  431. 431.
    S. Lipschutz, “On Greendlinger groups,” Commun. Pure Appl. Math.,23, No. 5, 743–747 (1970).Google Scholar
  432. 432.
    S. Lipschutz and C. F. Miller, III, “Groups with certain solvable and unsolvable decision problems,” Commun. Pure Appl. Math.,24, No. 1, 7–15 (1971).Google Scholar
  433. 433.
    S. Lipschutz, “On the word problem and T-fourth-groups,” in: Word Problems, Decision Problems, and the Burnside Problem in Group Theory, Amsterdam-London (1973), pp. 443–451.Google Scholar
  434. 434.
    S. Lipschutz, “Identity theorems in small-cancellation groups,” Commun. Pure Appl. Math.,26, Nos. 5–6, 775–780 (1973).Google Scholar
  435. 435.
    S. Lipschutz, “The conjugacy problem and cyclic amalgamations,” Bull. Am. Math. Soc.,81, No. 1, 114–116 (1975).Google Scholar
  436. 436.
    S. Lipschutz, “Groups with solvable conjugacy problems,” Illinois J. Math.,24, No. 2, 192–195 (1980).Google Scholar
  437. 437.
    S. Lipschutz and M. Lipschutz, “A note on root decision problems in groups,” Can. J. Math.,25, No. 4, 702–705 (1973).Google Scholar
  438. 438.
    J. Lockhart, “Decision problems in classes of group presentations with uniformly solvable word problem,” Arch. Math.,37, No, 1, 1–6 (1981).CrossRefGoogle Scholar
  439. 439.
    R. C. Lyndon, “Properties preserved in subdirect products,” Pac. J. Math.,9, No. 1, 155–164 (1959).Google Scholar
  440. 440.
    R. C. Lyndon, “Properties preserved under homomorphism, ” Pac. J. Math.,9, No. 1, 143–154 (1959).Google Scholar
  441. 441.
    R. C. Lyndon, “Properties preserved under algebraic constructions,” Bull. Am. Math. Soc.,65, No. 5, 287–299 (1959).Google Scholar
  442. 442.
    R. C. Lyndon, “Groups with parametric exponents,” Trans. Am. Math. Soc.,96, No. 3, 518–533 (1960).Google Scholar
  443. 443.
    R. C. Lyndon, “On Dehn's algorithm,” Math. Ann.,166, No. 3, 208–228 (1966).CrossRefGoogle Scholar
  444. 444.
    R. C. Lyndon, “Equations in groups,” Bol. Soc. Brasil, Mat.,11, No. 1, 79–102 (1980).Google Scholar
  445. 445.
    R. C. Lyndon and P. E. Schupp, Combinatorial Group Theory, Springer-Verlag, Berlin (1977).Google Scholar
  446. 446.
    R. C. Lyndon and M. J. Wicks, “Commutators in free groups,” Can. Math. Bull.,24, No. 1, 101–106 (1981).Google Scholar
  447. 447.
    A. Macintyre, “On Ω1-categorical theories of Abelian groups,” Fund. Math.,70, No. 3, 253–270 (1971).Google Scholar
  448. 448.
    A. Macintyre, “Omitting quantifier-free types in generic structures,” J. Symbol. Log.,37, No. 3, 512–520 (1972).Google Scholar
  449. 449.
    A. Macintyre, “Martin's axiom applied to existentially closed groups,” Math. Scand.,32, No. 1, 46–56 (1973).Google Scholar
  450. 450.
    A. Macintyre, “On algebraically closed groups,” Ann. Math.,96, No. 1, 53–97 (1972).Google Scholar
  451. 451.
    A. Macintyre, “Existentially closed structures and Jensen's principle,” Israel J. Math.,25, Nos. 3–4, 202–210 (1976).Google Scholar
  452. 452.
    W. Magnus, “Das IdentitÄtsproblem für Gruppen mit einer definierenden Relation,” Math. Ann.,106, 295–307 (1932).CrossRefMathSciNetGoogle Scholar
  453. 453.
    W. Magnus, Non-Euclidean Tessellations and Their Groups, Academic Press, New York (1974).Google Scholar
  454. 454.
    B. J. Maier, “Existenziell abgeschlossene lokal endliche p-Gruppen” Arch. Math.,37, No. 2, 113–128 (1981).CrossRefGoogle Scholar
  455. 455.
    J. Matthews, “The conjugacy problem in wreath products and free metabelian groups,” Trans. Am. Math. Soc.,121, No. 2, 329–339 (1966).Google Scholar
  456. 456.
    B. H. Mayoh, “Groups and semigroups with solvable word problems,” Proc. Am. Math. Soc.,18, No. 6, 1038–1039 (1967).Google Scholar
  457. 457.
    J. McCool, “Elements of finite order in free product sixth-groups,” Glasgow Math. J.,9, No. 2, 128–145 (1968).Google Scholar
  458. 458.
    J. McCool, “The order problem and the power problem for free product sixth-groups,” Glasgow Math. J.,10, No. 1, 1–9 (1969).Google Scholar
  459. 459.
    J. McCool, “Unsolvable problems in groups with solvable word problem,” Can. J. Math.,22, No. 4, 836–838 (1970).Google Scholar
  460. 460.
    J. McCool, “The power problem for groups with one defining relator,” Proc. Am. Math. Soc.,28, No. 2, 427–430 (1971).Google Scholar
  461. 461.
    J. McCool and A. Pietrowski, “On free products with amalgamation of two infinite cyclic groups,” J. Algebra,18, No. 3, 377–383 (1971).CrossRefGoogle Scholar
  462. 462.
    J. McCool and A. Pietrowski, “On recognizing certain one-relation presentations,” Proc. Am. Math. Soc.,36, No. 1, 31–33 (1972).Google Scholar
  463. 463.
    T. P. McDonough, “Root-closure in free groups,” J. London Math. Soc.,2, No. 1, 191–192 (1970).Google Scholar
  464. 464.
    R. McKenzie and R. J. Thompson, “An elementary construction of unsolvable word problems in group theory,” in: Word Problems, Decision Problems and the Burnside Problem in Group Theory, Amsterdam-London (1973), pp. 457–478.Google Scholar
  465. 465.
    S. Meskin, “A finitely generated residually finite group with an unsolvable word problem,” Proc. Am. Math. Soc.,43, No. 1, 8–10 (1974).Google Scholar
  466. 466.
    C. F. Miller, III, “On Britton's Theorem A,” Proc. Am. Math. Soc.,19, No. 5, 1151–1154 (1968).Google Scholar
  467. 467.
    C. F. Miller, III, On Group-Theoretic Decision Problems and Their Classification, Ann. Math. Stud., No. 68 (1971).Google Scholar
  468. 468.
    C. F. Miller, III, “Decision problems in algebraic classes of groups (a survey),” in: Word Problems, Decision Problems, and the Burnside Problem in Group Theory, Amsterdam-London (1973), pp. 507–523.Google Scholar
  469. 469.
    C. F. Miller, III, “The word problem in quotients of a group,” in: Aspects of Effective Algebra (Clayton, 1979) (1981), pp. 246–250.Google Scholar
  470. 470.
    C. F. Miller, III and P. E. Schupp, “The geometry of Higman-Neumann-Neumann extensions,” Commun. Pure Appl. Math.,26, Nos. 5–6, 787–802 (1973).Google Scholar
  471. 471.
    J. W. Milnor, “Two complexes which are homeomorphic but combinatorially distinct,” Ann. Math.,74, No. 3, 575–590 (1961).Google Scholar
  472. 472.
    A. W. Mostowski, “On the decidability of some problems in special classes of groups,” Fund. Math.,59, No. 2, 123–135 (1966).Google Scholar
  473. 473.
    A. W. Mostowski, “Uniform algorithms for deciding group-theoretic problems,” in: Word Problems, Decision Problems, and the Burnside Problem in Group Theory, Amsterdam-London (1973).Google Scholar
  474. 474.
    A. W. Mostowski, Decision Problems in Group Theory, Techn. Report, No. 19, Univ. of Iowa (1969).Google Scholar
  475. 475.
    O. Mutzbauer, “Klassifizierung torsionsfreier abelscher Gruppen des Ranges 2 (2. Teil),” Rend. Sem. Mat. Univ. Padova,58, 163–174 (1977).Google Scholar
  476. 476.
    B. Neumann, “A note on algebraically closed groups,” J. London Math. Soc.,27, No. 2, 247–249 (1952).Google Scholar
  477. 477.
    B. Neumann, “The isomorphism problem for algebraically closed groups,” in: Word Problems, Decision Problems, and the Burnside Problem in Group Theory, Amsterdam-London (1973), pp. 553–562.Google Scholar
  478. 478.
    P. S. Novikov, “On the algorithmic insolvability of the word problem in group theory,” Am. Math. Soc. Translat. Ser. 2,9, 1–122 (1958).Google Scholar
  479. 479.
    F. Oger, “Des groupes nilpotents de classe 2 sans torsion de type fini ayant les mÊmes images finies peuvent ne pas Être élémentairement équivalents,” C. R. Acad. Sci., Sér. 1,294, No. 1, 1–4 (1982).Google Scholar
  480. 480.
    P. Olin, “Elementary properties of V-free products of groups,” J. Algebra,47, No. 1, 105–114 (1977).CrossRefGoogle Scholar
  481. 481.
    C. D. Papakyriakopoulos, “On Dehn's lemma and the asphericity of knots,” Ann. Math.,66, No. 1, 1–26 (1957).Google Scholar
  482. 482.
    N. Peczynski and W. Reiwer, “On cancellations in HNN-groups,” Math. Z.,158, No. 1, 79–86 (1978).CrossRefGoogle Scholar
  483. 483.
    J. Perraud, Sur les conditions de petite simplification et l'algorithme de Dehn,” C. R. Acad. Sci.,284, No. 12, A659-A662 (1977).Google Scholar
  484. 484.
    J. Perraud, “Sur les conditions de petite simplification dans un produit libre,” C. R. Acad. Sci.,284, No. 13, A735-A737 (1977).Google Scholar
  485. 485.
    J. Perraud, “Sur l'utilisation de l'algorithme de Dehn dans un produit libre,” C. R. Acad. Sci.,284, No. 21, A1341-A1344 (1977).Google Scholar
  486. 486.
    J. Perraud, “Sur les conditions de petite simplification C” (1/2) et T(4), C′(1/4) et T*(4) dans un produit libre,” C. R. Acad. Sci.,AB286, No. 23, 1095–1098 (1978).Google Scholar
  487. 487.
    J. Perraud, “Sur le problème des mots des quotients de groupes et produits libres,” Bull. Soc. Math. France,108, No. 3, 285–331 (1980).Google Scholar
  488. 488.
    J. Perraud, “Sur la condition de petite simplification C′(1/6) dans un produit libre amalgamé,” C. R. Acad. Sci.,AB291, No. 4, A247-A250 (1980).Google Scholar
  489. 489.
    P. F. Pickel, “Finitely generated nilpotent groups with isomorphic finite quotients,” Trans. Am. Math. Soc.,160, 327–341 (1971).Google Scholar
  490. 490.
    P. F. Pickel, “Metabelian groups with the same finite quotients,” Bull. Austral. Math. Soc.,11, No. 1, 115–120 (1974).Google Scholar
  491. 491.
    P. F. Pickel, “A property of finitely generated residually finite groups,” Bull. Austral. Math. Soc.,15, No. 3, 347–350 (1976).Google Scholar
  492. 492.
    A. Pietrowski, “The isomorphism problem for one-relator groups with nontrivial centre,” Math. Z.,136, No. 2, 95–106 (1974).CrossRefGoogle Scholar
  493. 493.
    B. Poizat, “Sous-groupes définissables d'un groupe stable,” J. Symbol. Log.,46, No. 1, 137–146 (1981).Google Scholar
  494. 494.
    E. Post, “Recursively enumerable sets of positive integers and their decision problems,” Bull. Am. Math. Soc.,50, No. 5, 284–316 (1944).Google Scholar
  495. 495.
    E. Post, “Recursive unsolvability of a problem of Thue,” J. Symbol. Log.,12, 1–11 (1947).Google Scholar
  496. 496.
    H. Presburger, über die VollstÄndigheit eines gewissen Systems der Arithmetik ganzen Zahlen, in welchem die Additionals einige Operation hervortritt,” in: Comptes Rendus du 1 Congrès des Mathematiciens des Pays Slaves, Warszawa (1929), pp. 92–101, 395.Google Scholar
  497. 497.
    S. J. Pride, “The isomorphism problem for two-generator one-relator groups with torsion is solvable,” Trans. Am. Math. Soc.,227, 109–139 (1977).Google Scholar
  498. 498.
    M. O. Rabin, “Recursive unsolvability of group-theoretic problems,” Ann. Math.,67, No. 1, 172–194 (1958).Google Scholar
  499. 499.
    M. O. Rabin, “A simple method for undecidability proofs and some applications,” in: Logic and the Methodology and Philosophy of Science, Amsterdam (1965), pp. 58–68.Google Scholar
  500. 500.
    J. Reineke, “Minimale Gruppen,” Z. Math. Log. Grundl. Math.,22, No. 4, 357–379 (1975).Google Scholar
  501. 501.
    V. N. Remeslennikov and N. S. Romanovskii, “Algorithmic problems for solvable groups,” in: Word Problems II, North-Holland, Amsterdam-New York-Oxford (1980), pp. 337–346.Google Scholar
  502. 502.
    E. Rips, “Another characterization of finitely generated groups with a solvable word problem,” Bull. London Math. Soc.,14, No. 1, 43–44 (1982).Google Scholar
  503. 503.
    E. Rips, “Subgroups of small cancellation groups,” Bull. London Math. Soc.,14, No. 1, 45–47 (1982).Google Scholar
  504. 504.
    A. Robinson, “On the notion of algebraic closedness for noncommutative groups and fields,” J. Symbol. Log.,36, No. 3, 441–444 (1971).Google Scholar
  505. 505.
    A. Robinson and E. Zakon, “Elementary properties of ordered Abelian groups,” Trans. Am. Math. Soc.,96, No. 2, 222–235 (1960).Google Scholar
  506. 506.
    P. Rogers, “Preservation of saturation and stability in a variety of nilpotent groups,” J. Symbol. Log.,46, No. 3, 499–512 (1981).Google Scholar
  507. 507.
    G. Rosenberger, “Zun Isomorphieproblem für Gruppen mit einer definierenden Relation,” Illinois J. Math.,20, No. 4, 614–621 (1976).Google Scholar
  508. 508.
    G. Rosenberger, “Produkte von Potenzen und Kommutatoren in freien Gruppen,” J. Algebra,53, No. 2, 416–422 (1978).CrossRefGoogle Scholar
  509. 509.
    G. Rosenberger, “Applications of Nielsen's reduction method to the solution of combinatorial problems in group theory: a survey,” in: London Math. Soc. Lecture Notes Series, No. 36 (1979), pp. 339–358.Google Scholar
  510. 510.
    G. Rosenberger, “Gleichungen in Freien Produkten mit Amalgam,” Math. Z.,173, No. 1, 1–11 (1980).CrossRefGoogle Scholar
  511. 511.
    J. Rosenstein, “Categoricity of groups,” J. Algebra,25, No. 3, 435–467 (1973).CrossRefGoogle Scholar
  512. 512.
    P. Rothmaler, “Total transzendente abelsche Gruppen und Morley-Rang, ” Rept. Acad. Wiss. DDR. Zentralinst. Math. Mech., No. 5 (1978).Google Scholar
  513. 513.
    J. J. Rotman, The Theory of Groups: an Introduction, Allyn and Bacon, Boston (1973).Google Scholar
  514. 514.
    G. Sabbagh, “Catégoricité et stabilité: quelques exemples parmi les groupes et anneaux,” C. R. Acad. Sci.,280, No. 10, A603-A606 (1975).Google Scholar
  515. 515.
    G. Sabbagh, “Catégoricité en et stabilité: constructions les préservant et conditions de chaine,” C. R. Acad. Sci.,280, No. 9, A531-A533 (1975).Google Scholar
  516. 516.
    G. S. Sacerdote, “A characterization of the subgroups of finitely presented groups,” Bull. Am. Math. Soc.,82, No. 4, 609–611 (1976).Google Scholar
  517. 517.
    G. S. Sacerdote, “The Boone-Higman theorem and the conjugacy problem,” J. Algebra,49, No. 1, 212–221 (1977).CrossRefGoogle Scholar
  518. 518.
    G. S. Sacerdote, “Almost all free products of groups have the same positive theory,” J. Algebra,27, No. 3, 475–485 (1973).CrossRefGoogle Scholar
  519. 519.
    G. S. Sacerdote, “Elementary properties of free groups,” Trans. Am. Math. Soc.,178, 127–138 (1973).Google Scholar
  520. 520.
    G. S. Sacerdote, “Subgroups of finitely presented groups,” Proc. London Math. Soc.,35, No. 2 193–212 (1977).Google Scholar
  521. 521.
    C. M. Sanchez, “Minimal words in the free groups of rank two,” J. Pure Appl. Algebra,17, No. 3 333–337 (1980).CrossRefGoogle Scholar
  522. 522.
    H. P. Sankappanavar, “Decision problems: history and methods,” Math. Logic. Proc. First Brazil. Conf., 1977, New York-Basel (1978), pp. 241–91.Google Scholar
  523. 523.
    D. Saracino, “Wreath products and existentially complete solvable groups,” Trans. Am. Math. Soc.,197, 327–339 (1974).Google Scholar
  524. 524.
    D. Saracino, “Existentially complete nilpotent groups,” Israel J. Math.,25, No. 4, 241–248 (1976).Google Scholar
  525. 525.
    D. Saracino, “Existentially complete torsion-free nilpotent groups,” J. Symbol. Log.,43, No. 1, 126–134 (1978).Google Scholar
  526. 526.
    D. Saracino and C. Wood, “Periodic existentially closed nilpotent groups,” J. Algebra,58, No. 1, 189–207 (1979).CrossRefGoogle Scholar
  527. 527.
    D. Saracino and C. Wood, Abstract 78T-E47, Not. Am. Math. Soc.,25, A-441 (1978).Google Scholar
  528. 528.
    D. Saracino and C. Wood, “Periodic existentially closed nilpotent groups,” J. Algebra,58, No. 1, 189–207 (1979).CrossRefGoogle Scholar
  529. 529.
    H. Schiek, “Ähnlichkeitsanalyse von Gruppenrelationen,” Acta Math.,96, Nos. 3–4, 157–252 (1956).Google Scholar
  530. 530.
    H. Schubert, “Bestimmung der Primfaktorzerlegung von Verkettungen,” Math. Z.,76, No. 2, 116–148 (1961).CrossRefGoogle Scholar
  531. 531.
    P. E. Schupp, “On Dehn's algorithm and the conjugacy problem,” Math. Ann.,178, No. 2, 119–130 (1968).CrossRefGoogle Scholar
  532. 532.
    P. E. Schupp, “On the substitution problem for free groups,” Proc. Am. Math. Soc.,23, No. 2, 421–423 (1969).Google Scholar
  533. 533.
    P. E. Schupp, “A note on recursively enumerable predicates in groups,” Fund. Math.,66, No. 1, 61–63 (1969).Google Scholar
  534. 534.
    P. E. Schupp, “On Greendlinger's lemma,” Commun. Pure Appl. Math.,23, No. 2, 233–240 (1970).Google Scholar
  535. 535.
    P. E. Schupp, “Embeddings into simple groups,” J. London Math. Soc.,13, No. 1, 90–94 (1976).Google Scholar
  536. 536.
    W. Scott, “Algebraically closed groups,” Proc. Am. Math. Soc.,2, 118–121 (1951).Google Scholar
  537. 537.
    A. Seidenberg, “Constructions in algebra,” Trans. Am. Math. Soc.,197, 273–313 (1974).Google Scholar
  538. 538.
    S. Shelah and M. Ziegler, “Algebraically closed groups of large cardinality,” J. Symbol. Log.,44, No. 4, 522–532 (1979).Google Scholar
  539. 539.
    R. L. Smith, “Effective aspects of profinite groups,” J. Symbol. Log.,46, No. 4, 851–863 (1981).Google Scholar
  540. 540.
    C. Soulé, Cohomologie de SL3(z), “C. R. Acad. Sci.,280, No. 5, A251-A254 (1975).Google Scholar
  541. 541.
    C. Soulé, “The cohomology of SL3(z),” Topology,17, No. 1, 1–22 (1978).CrossRefGoogle Scholar
  542. 542.
    J. R. Stallings, “On the recursiveness of sets of presentations of 3-manifold groups,” Fund. Math.,51, No. 2, 191–194 (1962).Google Scholar
  543. 543.
    P. F. Stebe, “A residual property of certain groups,” Proc. Am. Math. Soc.,26, No. 1, 37–42 (1970).Google Scholar
  544. 544.
    P. F. Stebe, “Conjugacy separability of certain free products with amalgamation,” Trans. Am. Math. Soc.,156, May, 119–129 (1971).Google Scholar
  545. 545.
    P. F. Stebe, “Conjugacy separability of certain Fuchsian groups,” Trans. Am. Math. Soc.,163, Jan., 173–188 (1972).Google Scholar
  546. 546.
    P. F. Stebe, “Residual solvability of an equation in nilpotent groups,” Proc. Am. Math. Soc.,54, 57–58 (1976).Google Scholar
  547. 547.
    P. F. Stebe, “Nests in nilpotent groups,” Houston J. Math.,2, No. 3, 419–426 (1976).Google Scholar
  548. 548.
    J. Stillwell, Classical Topology and Combinatorial Group Theory, Springer-Verlag, New York-Heidelberg-Berlin (1980).Google Scholar
  549. 549.
    J. Stillwell, “The word problem and the isomorphism problem for groups,” Bull. Am. Math. Soc.,6, No. 1, 33–56 (1982).Google Scholar
  550. 550.
    S. E. Stonehewer, “Modular subgroup structure in infinite groups,” Proc. London Math. Soc.,32, No. 1, 63–100 (1976).Google Scholar
  551. 551.
    T. Szele, “Ein Analogen der Körpertheories für abelsche Gruppen,” J. Reine Angew. Math.,188, 167–192 (1950).Google Scholar
  552. 552.
    W. Szmielew, “Elementary properties of Abelian groups,” Fund. Math.,41, No. 2, 203–271 (1955).Google Scholar
  553. 553.
    A. Tarski, “Undecidability in group theory,” J. Symbol. Log.,14, 76–77 (1949).Google Scholar
  554. 554.
    A. Tarski, A. Mostowski, and R. M. Robinson, Undecidable Theories, North-Holland, Amsterdam (1953).Google Scholar
  555. 555.
    R. S. D. Thomas and B. T. Paley, “Garside's braid-conjugacy solution implemented,” Util. Math.,6, 321–335 (1974).Google Scholar
  556. 556.
    R. J. Thompson, “Embeddings into finitely generated simple groups which preserve the word problem,” in: Word Problems II, North-Holland, Amsterdam-New York-Oxford (1980).Google Scholar
  557. 557.
    W. Thurston, Lecture Notes, Princeton Math. Dept., Princeton (1977).Google Scholar
  558. 558.
    B. Truffault, “Sur le problème des mots pour les groupes de Greendlinger,” C. R. Acad. Sci.,267, No. 1, A1-A3 (1968).Google Scholar
  559. 559.
    A. M. Turing, “On computable N numbers with an application to the Entscheidungsproblem, ” Proc. London Math. Soc.,2, No. 42, 230–265 (1936).Google Scholar
  560. 560.
    A. M. Turing, “The word problem in semigroups with cancellation,” Ann. Math.,52, 491–505 (1950).Google Scholar
  561. 561.
    M. K. Valiev, “On polynomial reducibility of the word problem under embedding of recursively presented groups in finitely presented groups,” Lect. Notes Comput. Sci.,32, 432–438 (1975).Google Scholar
  562. 562.
    M. K. Valiev, “Universal group with twenty-one defining relations,” Discrete Math.,17, No. 2, 207–213 (1977).CrossRefGoogle Scholar
  563. 563.
    E. R. van Kampen, “On some lemmas in the theory of groups,” Am. J. Math.,55, 268–273 (1933).Google Scholar
  564. 564.
    F. Waldhausen, “The word problem in fundamental groups of sufficiently large irreducible three-manifolds,” Ann. Math.,88, No. 2, 272–280 (1968).Google Scholar
  565. 565.
    F. Waldhausen, “Recent results on sufficiently large 3-manifolds,” Proc. Symp. Pure Math., Am. Math. Soc.,32, 21–38 (1978).Google Scholar
  566. 566.
    J. W. Wamsley, “Computing soluble groups,” in: Lecture Notes in Mathematics, Vol. 573, Springer-Verlag (1977), pp. 118–125.Google Scholar
  567. 567.
    B. A. F. Wehrfritz, “Two examples of soluble groups that are not conjugacy separable,” J. London Math. Soc.,7, No. 2, 312–316 (1973).Google Scholar
  568. 568.
    B. A. F. Wehrfritz, “Conjugacy separating representations of free groups,” Proc. Am. Math. Soc.,40, No. 1, 52–56 (1973).Google Scholar
  569. 569.
    B. A. F. Wehrfritz, “Another example of a soluble group that is not conjugacy separable,” J. London Math. Soc.,14, No. 2, 380–382 (1976).Google Scholar
  570. 570.
    C. M. Weinbaum, “Visualizing the word problem, with an application to sixth groups,” Pac. J. Math.,16, No. 3, 557–578 (1966).Google Scholar
  571. 571.
    C. M. Weinbaum, “The word and conjugacy problems for the knot group of any tame, prime, alternating knot,” Proc. Am. Math. Soc.,30, No. 1, 22–26 (1971).Google Scholar
  572. 572.
    J. H. C. Whitehead, “On equivalent sets of elements in a free group,” Ann. Math.,37, 782–800 (1936).MathSciNetGoogle Scholar
  573. 573.
    M. Ziegler, “Gruppen mit vorgeschreibenem Wortproblem,” Math. Ann.,219, No. 1, 43–51 (1976).CrossRefGoogle Scholar
  574. 574.
    H. Zieschang, “über die Nielsensche Kürzungsmethode in freien Produkten mit Amalgam,” Invent. Math.,10, No. 1, 4–37 (1970).CrossRefGoogle Scholar
  575. 575.
    H. Zieschang, E. Vogt, and H.-D. Coldewey, FlÄchen und Ebene Diskontinuierliche Gruppen, Springer-Verlag, Berlin-Heidelberg-New York (1970).Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • V. N. Remeslennikov
  • V. A. Roman'kov

There are no affiliations available

Personalised recommendations