General Relativity and Gravitation

, Volume 26, Issue 12, pp 1233–1248 | Cite as

A local characterization of Schwarzschild and Reissner metrics

  • E. García-Río
  • D. N. Kupeli


A local characterization of Schwarzschild and Reissner metrics is made by using the concepts of infinitesimal null anisotropy (or equivalently, infinitesimal isotropy) and weak affinity.


Anisotropy Isotropy Differential Geometry Weak Affinity Local Characterization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beem, J. K., and Ehrlich, P. E. (1981).Global Lorentzian Geometry (Marcel Dekker, New York).Google Scholar
  2. 2.
    Dajczer, M., and Nomizu, K. (1980).Bol. Soc. Bras. Math. 11, 25.Google Scholar
  3. 3.
    Dajczer, M., and Nomizu, K. (1980).Math. Ann. 247, 279.Google Scholar
  4. 4.
    Deszez, R., Verstraelen, L., and Vranken, L. (1991).Gen. Rel. Grav. 23, 671.Google Scholar
  5. 5.
    Frankel, T. (1979).Gravitational Curvature (Freeman, San Francisco).Google Scholar
  6. 6.
    García-Río, E. and Kupeli, D. (1994).J. Geom. Phys. 13, 207.Google Scholar
  7. 7.
    Harris, H. (1985).Gen. Rel. Grav. 17, 493.Google Scholar
  8. 8.
    Karcher, H. (1982).Arch. Math. 38, 58.Google Scholar
  9. 9.
    Koch-Sen, L. (1985).J. Math. Phys. 26, 407.Google Scholar
  10. 10.
    O'Neill, B. (1983).Semi-Riemannian Geometry (Academic Press, New York).Google Scholar
  11. 11.
    Ponge, R. and Reckziegel, H. (1993).Geom. Dedicata 48, 15.Google Scholar
  12. 12.
    Poor, W. A. (1981).Differential Geometric Structures (McGraw-Hill, New York).Google Scholar
  13. 13.
    Sachs, R. K., and Wu, H. (1977).General Relativity for Mathematicians (Springer-Verlag, New York).Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • E. García-Río
    • 1
  • D. N. Kupeli
    • 2
  1. 1.Departamento de Analise Matematica, Facultade de MatematicasUniversidade de Santiago de CompostelaSantiago de CompostelaSpain
  2. 2.Department of MathematicsMiddle East Technical UniversityAnkaraTurkey

Personalised recommendations