Skip to main content
Log in

Sulfate reduction and anaerobic glycerol degradation by a mixed microbial culture

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Anaerobic glycerol degradation by a mixed microbial culture from a fermenter fed with industrial alcohol distillation waste water, was investigated in the absence or presence of sulfate, at 37°C and at a constant pH of 7.2. In the absence of sulfate, glycerol utilization was found to be characterized by the transient formation of 1,3-propanediol prior to propionate and acetate accumulation. In the presence of sulfate, 1,3-propanediol production was minor, and the carbon balance reflected a considerable accumulation of intermediate(s). A study of the role of sulfate reduction and methanogenesis on anaerobic 1,3-propanediol degradation showed that consumption of this substrate by the mixed microbial culture required a terminal electron acceptor. The number of fermentative and sulfate-reducing bacteria with glycerol or 1,3-propanediol as carbon and energy source revealed that sulfate-reducing bacteria outcompete fermentative bacteria for these substrates. The possible ecological role of sulfate-reducing bacteria in the metabolism of these reduced substrates is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. Batlle JL, Collon Y (1979) Dosage enzymatique en flux continu du glycérol dans les vins. Conn Vigne Vin 1:45–50

    Google Scholar 

  2. Bories A (1981) Méthanisation des eaux résiduaires de distilleries. Trib Cebedeau, 456:475–483

    Google Scholar 

  3. Bories A, Raynal J, Jover JP (1982) Fixed film reactor with plastic media for methane fermentation of distilleries. In: Strub A, Chartier P, Schleser G (eds) Energy from biomass. London: Applied Science Publisher, pp 567–571

    Google Scholar 

  4. Bryant MP, Wolin EA, Wolin MJ, Wolfe RS (1967)Methanobacillus omelianskii, a symbiotic association of two species of bacteria. Ark Mikrobiol 59:20–31

    Google Scholar 

  5. Cord-Ruwisch R (1985) A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. J Microbiol Methods 4:33–36

    Google Scholar 

  6. Cord-Ruwisch R, Ollivier B, Garcia JL (1986) Fructose degradation byDesulfovibrio sp. in pure culture and in coculture withMethanospirillum hungatei. Curr Microbiol. 13:285–289

    Google Scholar 

  7. Dubourguier HC, Samain E, Prensier G, Albagnac G (1986) Characterisation of two strains ofPelobacter carbinolicus isolated from anaerobic digesters. Arch Microbiol 145:248–253

    Google Scholar 

  8. Eichler B, Schink B (1984) Oxidation of primary aliphatic alcohols byAcetobacterium carbinolicum sp. nov., a homoacetogenic anaerobe. Arch Microbiol 140:147–152

    Google Scholar 

  9. Emde R, Schink B (1987) Fermentation of triacetin and glycerol byAcetobacterium sp. No energy is conserved by acetate excretion. Arch Microbiol 149:142–148

    Google Scholar 

  10. Esnault G, Caumette P, Garcia JL (1988) Characterization ofDesulfovibrio giganteus sp. nov., a sulfate-reducing bacterium isolated from a brackish coastal lagoon. System Appl Microbiol 10:147–151

    Google Scholar 

  11. Forage RG, Foster MA (1982) Glycerol fermentation inKlebsiella pneumoniae: functions of the coenzyme B12-dependent glycerol and diol dehydratases. J Bacteriol 149:413–419

    PubMed  Google Scholar 

  12. Forsberg CW (1987) Production of 1,3-propanediol from glycerol byClostridium acetobutylicum and otherClostridium species. Appl Environ. Microbiol 53:639–643

    Google Scholar 

  13. Gunsalus IC (1947) Products of anaerobic glycerol fermentation byStreptococcus faecalis. J Bacteriol 54:239–244

    Google Scholar 

  14. Hobbie JE, Daley RJ, Jasper S (1977) Use of nucleopore filters for counting bacteria by fluorescence microscopy. Appl Environ Microbiol 33:1225–1228

    PubMed  Google Scholar 

  15. Hungate RE (1960) Microbial ecology of rumen. Bacteriol Rev 24:353–364

    PubMed  Google Scholar 

  16. Joubert WA, Britz TJ (1987) Isolation of saccharolytic dissimilatory sulfate-reducing bacteria. FEMS Microbiol Lett 48:35–40

    Google Scholar 

  17. Kremer DR, Hansen TA (1987) Glycerol and dihydroxyacetone dissimilation inDesulfovibrio strains. Arch Microbiol 147:249–256

    Google Scholar 

  18. Landre J (1983) Détermination du carbone organique total dans les eaux potables par oxydation U.V. Eau Industries Nuisances 71:25–28

    Google Scholar 

  19. Laroche M (1983) Métabolisme intermédiaire des acides gras volatils en fermentation méthanique. Thése doctorat, Institut National Des Sciences Appliquées, Toulouse, France

    Google Scholar 

  20. Macy JM, Snellen JE, Hungate RE (1972) Use of syringe methods for anaerobiosis. Am J Clin Nutr 25:1318–1323

    PubMed  Google Scholar 

  21. McInerney MJ, Bryant MP, Pfennig N (1979) Anaerobic bacterium that degrades fatty acids in syntrophic association with methanogens. Arch Microbiol 122:129–135

    Google Scholar 

  22. Mickelson MN, Werkman CH (1940) The dissimilation of glycerol byColi-aerogenes intermediates. J Bacteriol 39:709–715

    Google Scholar 

  23. Nakas JP, Chaedle MS, Parkinson CM, Coonley CE, Tannenbaum SW (1983) System development of linked fermentation production of solvents from algal biomass. Appl Environ Microbiol 46:1017–1023

    Google Scholar 

  24. Nanninga HJ, Gottschal JC (1986) Isolation of a sulfate-reducing bacterium growing with methanol. FEMS Microbiol Eco 38:125–130

    Google Scholar 

  25. Nanninga HJ, Gottschal JC (1987) Properties ofDesulfovibrio carbinolicus sp. nov. and other sulfate-reducing bacteria isolated from an anaerobic-purification plant. Appl Environ Microbiol 51:572–579

    Google Scholar 

  26. Ollivier B, Cord-Ruwisch R, Hatchikian EC, Garcia JL (1988) Characterization ofDesulfovibrio fructosovorans sp. nov. Arch Microbiol 149:447–450

    Google Scholar 

  27. Postgate JR (1984) The sulfate reducing bacteria, 2nd ed London: Cambridge University Press

    Google Scholar 

  28. Qatibi AI (1990) Fermentation du lactate, du glycérol et des diols par les bactéries sulfato-réductrices du genreDesulfovibrio. Thèse doctorat, Univer. Aix-Marseille I, France

    Google Scholar 

  29. Qatibi AI, Bories A (1988) Glycerol fermentation and sulfate utilization during the anaerobic digestion process. In: Tilche A, Rozzi A (eds) Fifth Intern. Symp. Anaerobic Digestion, Monduzzi Editore, Bologna, pp 69–73

    Google Scholar 

  30. Qatibi AI, Garcia JL (1989) Glycerol degradation byDesulfovibrio sp., in pure culture and in coculture withMethanospirilum hungatei. In: FEMS Symp. microbiology and biochemistry of strict anaerobes involved in interspecies hydrogen transfer. New York: Plenum Publ. Corp., in press

    Google Scholar 

  31. Qatibi AI, Cayol JL, Garcia JL (1989) 1,2- and 1,3-propanediol degradation byDesulfovibrio alcoholovorans sp. nov., in pure culture or through interspecies transfer. In: FEMS Symp. microbiology and biochemistry of strict anaerobes involved in interspecies hydrogen transfer. New-York: Plenum Publ. Corp., in press

    Google Scholar 

  32. Quastel JH, Stephenson M, Whetham MD (1925) Some reactions of resting bacteria in relation to anaerobic growth. Biochem J 19:304–317

    Google Scholar 

  33. Schutz H, Radler F (1984) Anaerobic reduction of glycerol to propanediol-1,3 byLactobacillus brevis andLactobacillus buchneri. Syst Appl Microbiol. 5:169–178

    Google Scholar 

  34. Serjak WC, Day WH, Van Lanen JM, Boruff CS (1954) Acrolein production by bacteria found in distillery grain mashes. Appl Microbiol 2:14–20

    PubMed  Google Scholar 

  35. Stams A, Hansen TA, Skyring GW (1985) Utilisation of amino acids as energy substrates by two marineDesulfovibrio strains. FEMS Microbiol Lett 31:11–15

    Google Scholar 

  36. Thiamann KV (1955) The life of bacteria. New York: MacMillan Publishing Co

    Google Scholar 

  37. Widdel F (1980) Anaerober Abbau von Fettsaüren und Benzoesaüre durch neu isolierte Arten Sulfat-reduzierender Bakterien. Doctoral thesis, Univ Göttingen, FRG

    Google Scholar 

  38. Widdel F (1988) Microbiology and ecology of sulfate- and sulfur-reducing bacteria. In: Zehnder AJB (ed) Biology of anaerobic microorganisms. New York: John Wiley, pp 469–585

    Google Scholar 

  39. Widdel F, Pfennig N (1977) A new anaerobic sporing acetate-oxidizing, sulfate-reducing bacterium,Desulfotomaculum (emend)acetoxidans. Arch Microbiol 112:119–122

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qatibi, AI., Bories, A. & Garcia, JL. Sulfate reduction and anaerobic glycerol degradation by a mixed microbial culture. Current Microbiology 22, 47–52 (1991). https://doi.org/10.1007/BF02106212

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02106212

Keywords

Navigation