Journal of Molecular Evolution

, Volume 29, Issue 1, pp 68–88 | Cite as

Electrophoretic and immunological comparisons of chloroplast and prokaryotic ribosomal proteins reveal that certain families of large subunit proteins are evolutionarily conserved

  • Barbara L. Randolph-Anderson
  • Nicholas W. Gillham
  • John E. Boynton


Antibodies to individual chloroplast ribosomal (r-)proteins ofChlamydomonas reinhardtii synthesized in either the chloroplast or the cytoplasm were used to examine the relatedness ofChlamydomonas r-proteins to r-proteins from the spinach (Spinacia oleracea) chloroplast,Escherichia coli, and the cyanobacteriumAnabaena 7120. In addition,35S-labeled chloroplast r-proteins from large and small subunits ofC. reinhardtii were coelectrophoresed on 2-D gels with unlabeled r-proteins from similar subunits of spinach chloroplasts,E. coli, andAnabaena to compare their size and net charge. Comigrating protein pairs were not always immunologically related, whereas immunologically related r-protein pairs often did not comigrate but differed only slightly in charge and molecular weight. In constrast, when35S-labeled chloroplast r-proteins from large and small subunits of a closely related speciesC. smithii were coelectrophoresed with unlabeledC. reinhardtii chloroplast r-proteins, only one pair of proteins from each subunit showed a net displacement in mobility.

Analysis of immunoblots of one-dimensional SDS and two-dimensional urea/SDS gels of large and small subunit r-proteins from these species revealed more antigenic conservation among the four species of large subunit r-proteins than small subunit r-proteins.Anabaena r-proteins showed the greatest immunological similarity toC. reinhardtii chloroplast r-proteins. In general, antisera made against chloroplast-synthesized r-proteins inC. reinhardtii showed much higher levels of cross-reactivity with r-proteins fromAnabaena, spinach, andE. coli than did antisera to cytoplasmically synthesized r-proteins. All spinach r-proteins that cross-reacted with antisera to chloroplast-synthesized r-proteins ofC. reinhardtii are known to be made in the chloroplast (Dorne et al. 1984b). FourE. coli r-proteins encoded by the S10 operon (L2, S3, L16, and L23) were found to be conserved immunologically among the four species. Two of the large subunit r-proteins, L2 and L16, are essential for peptidyltransferase activity. The third (L23) and two otherE. coli large subunit r-proteins (L5 and L27) that have immunological equivalents among the four species are functionally related to but not essential for peptidyltransferase activity.

Key words

Ribsomal proteins Chloroplast Two-dimensional gel electrophoresis Immunological cross-reactivity Protein evolution Peptidyltransferase Anabaena 7120 Escherichia coli 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Auron PE, Fahnestock SR (1981) Functional organization of the large ribosomal subunit ofBacillus stearothermophilus. J Biol Chem 256:10105–10110PubMedGoogle Scholar
  2. Bartsch M (1985) Correlation of chloroplast and bacterial ribosomal proteins by cross-reactions of antibodies specific to purifiedEscherichia coli ribosomal proteins. J Biol Chem 260:237–241PubMedGoogle Scholar
  3. Bartsch M, Kimura M, Subramanian AR (1982) Purification, primary structure, and homology relationships of a chloroplast ribosomal protein. Proc Natl Acad Sci USA 79:6871–6875Google Scholar
  4. Bonner WM, Laskey RA (1974) A film detection method for tritium-labelled proteins and nucleic acids in polyacrylamide gels. Eur J Biochem 46:83–88CrossRefPubMedGoogle Scholar
  5. Bourque DP, Capel MS (1982) Isolation and purification of tobacco chloroplast ribosomes. In: Edelman M, Hallick RB, Chua NH (eds) Methods in chloroplast molecular biology. Elsevier Biomedical Press, Amsterdam, pp 617–628Google Scholar
  6. Boynton JE, Gillham NW, Lambowitz AM (1980) Biogenesis of chloroplast and mitochondrial ribosomes. In: Chambliss G, Craven GR, Davies J, Davis K, Kahan L, Nomura M (eds) Ribosomes: structure, function and genetics. University Park Press, Baltimore, pp 903–950Google Scholar
  7. Cooperman BS (1980) Functional sites on theE. coli ribosome as defined by affinity labeling. In: Chambliss G, Craven GR, Davies J, Davis K, Kahan L, Nomura M (eds) Ribosomes: structure, function and genetics. University Park Press, Baltimore, pp 531–554Google Scholar
  8. Dohme F, Nierhaus KH (1976) Role of 5S RNA in assembly and function of the 50S subunit fromEscherichia coli. Proc Natl Acad Sci USA 73:2221–2225PubMedGoogle Scholar
  9. Dorne AM, Eneas-Filho J, Heizmann P, Mache R (1984a) Comparison of ribosomal proteins of chloroplast from spinach and ofE. coli. Mol Gen Genet 193:129–134CrossRefPubMedGoogle Scholar
  10. Dorne AM, Lescure AM, Mache R (1984b) Site of synthesis of spinach chloroplast ribosomal proteins and formation of incomplete ribosomal particles in isolated chloroplasts. Plant Mol Biol 3:83–90CrossRefGoogle Scholar
  11. Duggleby RG, Kaplan H, Visentin LP (1975) Carboxyl-terminal sequences of procaryotic ribosomal proteins fromEscherichia coli Bacillus stearothermophilus, andHalobacterium cutirubrum. Can J Biochem 53:827–833PubMedGoogle Scholar
  12. Eneas-Filho J, Hartley MR, Mache R (1981) Pea chloroplast ribosomal proteins: characterization and site of synthesis. Mol Gen Genet 184:484–488CrossRefGoogle Scholar
  13. Erdmann VA, Fahnestock S, Higo K, Nomura M (1971) Role of 5S RNA in the functions of 50S ribosomal subunits. Proc Natl Acad Sci USA 68:2932–2936PubMedGoogle Scholar
  14. Fahnestock S, Erdmann V, Nomura M (1973) Reconstitution of 50S ribosomal subunits from protein-free ribonucleic acid. Biochemistry 12:220–224CrossRefPubMedGoogle Scholar
  15. Fahnestock SR, Strycharz WA, Marquis DM (1981) Immunological evidence of homologies among 50S ribosomal proteins ofBacillus stearothermophilus andEscherichia coli. J Biol Chem 256:10111–10116PubMedGoogle Scholar
  16. Fleming GH, Boynton JE, Gillham NW (1987) Cytoplasmic ribosomal proteins fromChlamydomonas reinhardtii: characterization and immunological comparisons. Mol Gen Genet 206:226–237CrossRefPubMedGoogle Scholar
  17. Hampl H, Schulze H, Nierhaus KH (1981) Ribosomal components fromEscherichia coli 50S subunits involved in the reconstitution of peptidyltransferase activity. J Biol Chem 256:2284–2288PubMedGoogle Scholar
  18. Hancock K, Tsang VCW (1983) India ink staining of proteins on nitrocellulose paper. Anal Biochem 133:157–162CrossRefPubMedGoogle Scholar
  19. Harris EH, Boynton JE, Gillham NW (1987) Chloroplast genome ofChlamydomonas reinhardtii. In: O'Brien SJ (ed) Genetic maps 1987. Cold Spring Harbor Laboratory. Cold Spring Harbor, NY, pp 266–275Google Scholar
  20. Horne JR, Erdmann VA (1972) Isolation and characterization of 5S RNA-protein complexes fromBacillus stearothermophilus andEscherichia coli ribosomes. Mol Gen Genet 119:337–344PubMedGoogle Scholar
  21. Isono K (1980) Genetics of ribosomal proteins and their modifying and processing enzymes inEscherichia coli. In: Chambliss G, Craven GR, Davies J, Davis K, Kahan L, Nomura M (eds) Ribosomes: structure, function and genetics. University Park Press, Baltimore, pp 641–669Google Scholar
  22. Kimura J, Kimura M (1987) The complete amino acid sequences of the 5S rRNA binding proteins L5 and L18 from the moderate thermophileBacillus stearothermophilus ribosome. FEBS Lett 210:85–90CrossRefPubMedGoogle Scholar
  23. Kimura M, Chow CK (1984) The complete amino acid sequences of ribosomal proteins L17, L27 and S9 fromBacillus stearothermophilus. Eur J Biochem 139:225–234CrossRefPubMedGoogle Scholar
  24. Kimura M, Kimura J, Ashman K (1985a) The complete primary structure of ribosomal proteins L1, L14, L15, L23, L24, and L29 fromBacillus stearothermophilus. Eur J Biochem 150:491–497CrossRefPubMedGoogle Scholar
  25. Kimura M, Kimura J, Watanabe K (1985b) The primary structure of ribosomal protein L2 fromBacillus stearothermophilus. Eur J Biochem 153:289–297CrossRefPubMedGoogle Scholar
  26. Kratz WA, Myers J (1955) Nutrition and growth of several blue-green algae. Am J Bot 42:282–287Google Scholar
  27. Kyriakopoulos A, Subramanian AR (1977) Positions of individual ribosomal proteins after two-dimensional electrophoresis by a sensitive procedure. Biochim Biophys Acta 474:308–311PubMedGoogle Scholar
  28. Lennox ES (1955) Transduction of linked genetic characters of the host by bacteriophage P1. Virology 1:190–206CrossRefPubMedGoogle Scholar
  29. Liu XQ, Gillham NW, Boynton JE (1988) Chloroplast ribosomal protein L-18 inChlamydomonas reinhardtii is processed during ribosome assembly. Mol Gen Genet 214:588–591CrossRefPubMedGoogle Scholar
  30. Lou JK, Wu M, Chang CH, Cuticchia AJ (1987) Localization of a r-protein gene within the chloroplast DNA replication origin ofChlamydomonas. Curr Genet 11:537–541CrossRefPubMedGoogle Scholar
  31. Lührmann R, Bald R, Stöffler-Meilicke M, Stöffler G (1981) Localization of the puromycin binding site on the large ribosomal subunit ofEscherichia coli by immunoelectron microscopy. Proc Natl Acad Sci USA 78:7276–7280PubMedGoogle Scholar
  32. Mache R, Dorne AM, Batlle RM (1980) Characterization of spinach plastid ribosomal proteins by two dimensional gel electrophoresis. Mol Gen Genet 177:333–338CrossRefGoogle Scholar
  33. Mache R, Audren H, Bisanz-Seyer C, Dorne AM, Massenet O, Rozier C, Thomas F (1987) Biosynthesis of chloroplast ribosomal components. In: Biggens J (ed) Progress in photosynthesis research, vol IV. Martinus Nijhoff Publishers, Dordrecht, pp 547–551Google Scholar
  34. Madjar JJ, Michel S, Cozzone AJ, Reboud JP (1979) A method to identify individual proteins in four different two-dimensional gel electrophoresis systems: application toEscherichia coli ribosomal proteins. Anal Biochem 92:174–182CrossRefPubMedGoogle Scholar
  35. Marquis DM, Fahnestock SR (1980) Stoichiometry and structure of a complex of acidic ribosomal protiens. J Mol Biol 142:161–179CrossRefPubMedGoogle Scholar
  36. Matheson AT, Möller W, Amons R, Yaguchi M (1980) Comparative studies on the structure of ribosomal proteins, with emphasis on the alanine-rich, acidic ribosomal ‘A’ protein. In: Chambliss G, Craven GR, Davies J, Davis K, Kahan L, Nomura M (eds) Ribosomes: structure, function and genetics. University Park Press, Baltimore, pp 297–332Google Scholar
  37. Möller W (1974) The ribosomal components involved in EFG-and EF-Tu-dependent GTP hydrolysis. In: Nomura M, Tissières A, Lengyel P (eds) Ribosomes. Cold Spring Harbor Laboratory, Cold Spring Harbor NY, pp 711–731Google Scholar
  38. Myers AM, Harris EH, Gillham NW, Boynton JE (1984) Mutations in a nuclear gene ofChlamydomonas cause the loss of two chloroplast ribosomal proteins, one synthesized in the chloroplast and the other in the cytoplasm. Cur Genet 8:369–378CrossRefGoogle Scholar
  39. Nierhaus KH (1980) Analysis of the assembly and function of the 50S subunit fromEscherichia coli ribosomes by reconstitution. In: Chambliss G, Craven GR, Davies J, Davis K, Kahan L, Nomura M (eds) Ribosomes: structure, function and genetics. University Park Press, Baltimore, pp 267–294Google Scholar
  40. Nierhaus KH, Dohme F (1979) Total reconstitution of 50S subunits fromEscherichia coli ribosomes. Methods Enzymol 59:443–449PubMedGoogle Scholar
  41. Nomura M, Post LE (1980) Organization of ribosomal genes and regulation of their expression inEscherichia coli. In: Chambliss G, Crayen GR, Davies J, Davis K, Kahan L, Nomura M (eds) Ribosomes: structure, function and genetics. University Park Press, Baltimore, pp 671–691Google Scholar
  42. Ofengand J, Ciesiolka J, Denman R, Nurse K (1985) Structural and functional interactions of the tRNA-ribosome complex. In: Hardesty B, Kramer G (eds) Structure, function and genetics of ribosomes. Springer-Verlag, New York, pp 473–494Google Scholar
  43. Ohyama K, Fukuzawa H, Kohchi T, Shirai H, Sano T, Sano S, Umesono K, Shiki Y, Takeuchi M, Chang Z, Aota S, Inokuchi H, Ozeki H (1986) Chloroplast gene organization deduced from complete sequence of liverwortMarchantia polymorpha chloroplast DNA. Nature 322:572–574CrossRefGoogle Scholar
  44. Olson HM, Grant PG, Cooperman BS, Glitz DG (1982) Immunoelectron microscopic localization of puromycin binding on the large subunit of theEscherichia coli ribosome. J Biol Chem 257:2649–2656PubMedGoogle Scholar
  45. Schmidt G, Strobel O, Stöffler-Meilicke M, Stöffler G, Böck A (1984) A ribosomal protein that is immunologically conserved in archaebacteria, eubacteria and eukaryotes. FEBS Lett 177:189–194CrossRefPubMedGoogle Scholar
  46. Schmidt RJ, Richardson CB, Gillham NW, Boynton JE (1983) Sites of synthesis of chloroplast ribosomal proteins inChlamydomonas. J Cell Biol 96:1451–1463CrossRefPubMedGoogle Scholar
  47. Schmidt RJ, Myers AM, Gillham NW, Boynton JE (1984) Immunological similarities between specific chloroplast ribosomal proteins fromChlamydomonas reinhardtii and ribosomal proteins fromEscherichia coli. Mol Biol Evol 1:317–324PubMedGoogle Scholar
  48. Schmidt RJ, Hosler JP, Gillham NW, Boynton JE (1985) Biogenesis and evolution of chloroplast ribosomes: cooperation of nuclear and chloroplast genes. In: Steinback K, Bonitz Z, Arntzen C, Bogorad L (eds) Molecular biology of the photosynthetic apparatus. Cold Spring Harbor Laboratory, Cold Spring Harbor NY, pp 417–427Google Scholar
  49. Schulze H, Nierhaus KH (1982) Minimal set of ribosomal components for reconstitution of the peptidyltransferase activity. EMBO J 1:609–613PubMedGoogle Scholar
  50. Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki K, Ohto C, Torazawa K, Meng BY, Sugita M, Deno H, Kamogashira T, Yamada K, Kusuda J, Takaiwa F, Kato A, Tohdoh N, Shimada H, Sugiura M (1986) The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J 5:2043–2049Google Scholar
  51. Sueoka N (1960) Mitotic replication of deoxyribonucleic acid inChlamydomonas reinhardtii. Proc Natl Acad Sci USA 46:83–89Google Scholar
  52. Tanaka M, Wakasugi T, Sugita M, Shinozaki K, Sugiura M (1986) Genes for the eight ribosomal proteins are clustered on the chloroplast genome of tobacco (Nicotiana tabacum): similarity to the S10 andspc operons ofEscherichia coli. Proc Natl Acad Sci USA 83:6030–6034Google Scholar
  53. Visentin LP, Matheson AT, Yaguchi M (1974) Homologies in procaryotic ribosomal proteins: alanine rich acidic proteins associated with polypeptide translation. FEBS Lett 41:310–314CrossRefPubMedGoogle Scholar
  54. Vogel DW, Hartmann RK, Bartsch M, Subramanian AR, Kleinow W, O'Brien TW, Pieler T, Erdmann VA (1984) Reconstitution of 50S ribosomal subunits fromBacillus stearothermophilus with 5S RNA from spinach chloroplasts and low-Mr RNA from mitochondria ofLocusta migratoria and bovine liver. FEBS Lett 169:67–72CrossRefPubMedGoogle Scholar
  55. Weissbach H (1980) Soluble factors in protein synthesis. In: Chambliss G, Craven GR, Davies J, Davis K, Kahan L, Nomura M (eds) Ribosomes: structure, function and genetics. University Park Press. Baltimore, pp 377–411Google Scholar
  56. Wittmann HG (1982) Components of bacterial ribosomes. Annu Rev Biochem 51:155–183CrossRefPubMedGoogle Scholar
  57. Wittmann-Liebold B (1985) Ribosomal proteins: their structure and evolution. In: Hardesty B, Kramer G (eds) Structure, function and genetics of ribosomes. Springer-Verlag, New York, pp 326–361Google Scholar
  58. Yu RST, Wittmann HG (1973) The sequence of steps in the attachment of 5S RNA to cores ofEscherichia coli ribosomes. Biochim Biophys Acta 324:375–385PubMedGoogle Scholar
  59. Zimmerman RA (1979) Protein-RNA interactions in the bacterial ribosome. Methods Enzymol 59:551–583PubMedGoogle Scholar
  60. Zurawski G, Bottomley W, Whitfeld PR (1984) Junctions of the large single copy region and the inverted repeats inSpinacia oleracea andNicotiana debneyi chloroplast DNA: sequence of the genes for tRNAHis and the ribosomal proteins S19 and L2. Nucleic Acids Res 12:6547–6558PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc 1989

Authors and Affiliations

  • Barbara L. Randolph-Anderson
    • 1
  • Nicholas W. Gillham
    • 2
  • John E. Boynton
    • 1
  1. 1.Department of BotanyDuke UniversityDurhamUSA
  2. 2.Department of ZoologyDuke UniversityDurhamUSA

Personalised recommendations