Journal of Molecular Evolution

, Volume 29, Issue 1, pp 40–51 | Cite as

Dinoflagellates in evolution. A molecular phylogenetic analysis of large subunit ribosomal RNA

  • G. Lenaers
  • L. Maroteaux
  • B. Michot
  • M. Herzog


The sequence of the large subunit ribosomal RNA (LsuRNA) gene of the dinoflagellateProrocentrum micans has been determined. The inferred rRNA sequence [3408 nucleotides (nt)] is presented in its most probable secondary structure based on compensatory mutations, energy, and conservation criteria. No introns have been found but a hidden break is present in the second variable domain, 690 nt from the 5′ end, as judged by agarose gel electrophoresis and primer extension experiments.Prorocentrum micans LsuRNA length and G+C content are close to those of ciliates and yeast. The conserved portions of the molecule (1900 nt) have been aligned with corresponding sequences from various eukaryotes, including five protista, one metaphyta, and three metazoa. An extensive phylogenetic study was performed, comparing two phenetic methods (neighbor joining on difference matrix, and Fitch and Margoliash on Knuc values matrix) and one cladistic (parsimony). The three methods led to similar tree topologies, except for the emergence of yeast that groups with ciliates and dinoflagellates when phenetic methods are used, but emerges later in the most parsimonious tree. This discrepancy was checked by statistical analyses on reduced trees (limited to four species) inferred using parsimony and evolutionary parsimony methods. The data support the phenetic tree topologies and a close relationship between dinoflagellates, ciliates, and yeast.

Key words

Ribosomal gene sequence Large subunit rRNA Secondary structure Prorocentrum micans Dinoflagellate Phylogenetic tree 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baroin A, Perasso R, Qu LH, Brugerolle G, Bachellerie J-P, Adoutte A (1988) Partial phylogeny of unicellular eukaryotes based on rapid sequencing of a portion of 28S ribosomal RNA. Proc Natl Acad Sci USA 85:3474–3478PubMedGoogle Scholar
  2. Brosius J, Dull TJ, Noller HF (1980) Complete nucleotide sequence of a 23S ribosomal RNA gene fromEscherichia coli. Proc Natl Acad Sci USA 77:201–204Google Scholar
  3. Cavalier-Smith T (1981) The origin and early evolution of the eukaryotic cell. Soc Gen Microbiol Symp 32:33–84Google Scholar
  4. Corliss JO (1984) The kingdom Protista and its 45 phyla. BioSystems 17:87–126CrossRefPubMedGoogle Scholar
  5. Dodge JD (1965) Chromosome structure in the dinoflagellates and the problem of the mesokaryotic cell. Excerpta Med Int Congr Ser 91:339–341Google Scholar
  6. Ellis RE, Sulston JE, Coulson AR (1986) The rDNA ofC. elegans: sequence and structure. Nucleic Acids Res 14:2345–2364PubMedGoogle Scholar
  7. Felsenstein J (1988) Perils of molecular introspection. Nature 335:118CrossRefGoogle Scholar
  8. Fitch WM (1977) On the problem of discovering the most parsimonious tree. Am Nat 111:223–257CrossRefGoogle Scholar
  9. Fitch WM (1981) A non-sequential method for constructing trees and hierarchical classifications. J Mol Evol 18:30–37CrossRefPubMedGoogle Scholar
  10. Fitch WM, Margoliash E (1967) Construction of phylogenetic trees. Science 155:279–284PubMedGoogle Scholar
  11. Gourret JP (1978) Description et interpretation des structurés observés dans les bactéroides deRhizobium. Biol Cell 32:299–306Google Scholar
  12. Gressel J, Bermann T, Cohen N (1975) Dinoflagellate ribosomal RNA; an evolutionary relic? J Mol Evol 5:307–313CrossRefPubMedGoogle Scholar
  13. Gunderson JH, Elwood H, Ingold A, Kindle K, Sogin M (1987) Phylogenetic relationships between chlorophytes, chrysophytes, and oomycetes. Proc Natl Acad Sci USA 84:5823–5827PubMedGoogle Scholar
  14. Gutell RR, Fox EF (1988) A compilation of large subunit RNA sequences presented in a structural format. Nucleic Acids Res 16(suppl):r175-r269PubMedGoogle Scholar
  15. Hassouna N, Michot B, Bachellerie JP (1984) The complete nucleotide sequence of mouse 28S rRNA gene. Implications for the process of size increase of the large subunit rRNA in higher eukaryotes. Nucleic Acids Res 12:3563–3583PubMedGoogle Scholar
  16. Hattori M, Sakaki Y (1986) Dideoxy sequencing method using denatured plasmid templates. Anal Biochem 152:232–238CrossRefPubMedGoogle Scholar
  17. Hennig W (1966) Phylogenetic systematics. University of Illinois Press, UrbanaGoogle Scholar
  18. Herzog M, Maroteaux L (1986) Dinoflagellate 17S rRNA sequence inferred from the gene sequence: evolutionary implications. Proc Natl Acad Sci USA 83:8644–8648Google Scholar
  19. Herzog M, Soyer MO (1981) Distinctive features of dinoflagellate chromatin. Absence of nucleosomes in a primitive speciesProrocentrum micans E. Eur J Cell Biol 23:295–302PubMedGoogle Scholar
  20. Herzog M, Soyer MO (1983) The native structure of dinoflagellate chromosomes and their stabilisation by Ca2+ and Mg2+ cations. Eur J Cell Biol 34:33–41Google Scholar
  21. Herzog M, Soyer MO, de Marcillac GD (1982) A high level of thymine replacement by 5-hydroxymethyluracil in nuclear DNA of the primitive dinoflagellateProrocentrum micans E. Eur J Cell Biol 27:151–155PubMedGoogle Scholar
  22. Herzog M, von Boletsky S, Soyer MO (1984) Ultrastructural and biochemical nuclear aspects of eukaryote classification: independent evolution of the dinoflagellates as a sister group of the actual eukaryotes? Origins Life 13:205–215CrossRefGoogle Scholar
  23. Hinnebush AG, Klotz LC, Immergut E, Loeblich AR III (1980) Deoxyribonucleic acid sequence organisation in the genome of the dinoflagellateCrypthecodinium cohnii. Biochemistry 19:1744–1755CrossRefPubMedGoogle Scholar
  24. Jarsch M, Bock A (1985) Sequence of the rRNA gene from the archaebacteriumMethanococcus vannielii: evolutionary and functional implications. Mol Gen Genet 200:305–312CrossRefGoogle Scholar
  25. Kimura M (1968) Evolutionary rate at the molecular level. Nature 217:624–626PubMedGoogle Scholar
  26. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions. J Mol Evol 16:111–120CrossRefPubMedGoogle Scholar
  27. King JL, Jukes TH (1969) Non-Darwinian evolution. Science 164:788–798PubMedGoogle Scholar
  28. Lake JA (1987) A rate-independent technique for analysis of nucleic acid sequences: evolutionary parsimony. Mol Biol Evol 4:167–191PubMedGoogle Scholar
  29. Lake JA (1988) Origin of the eukaryotic nucleus determined by rate-invariant analysis of rRNA sequences. Nature 331:184–186PubMedGoogle Scholar
  30. Lenaers G, Nielsen H, Engberg J, Herzog M (1988) The secondary structure of large-subunit rRNA divergent domains, a marker for protist evolution. BioSystems 21:215–222CrossRefPubMedGoogle Scholar
  31. Liu MH, Reddy R, Henning D, Spector D, Busch H (1984) Primary and secondary structure of dinoflagellate U5 small nuclear RNA. Nucleic Acids Res 12:1529–1542PubMedGoogle Scholar
  32. Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning, a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor NYGoogle Scholar
  33. Margulis L, Schwartz KV (1982) Five kingdoms: an illustrated guide to the phyla of life on earth. Freeman, San FranciscoGoogle Scholar
  34. Maroteaux L, Kahama C, Mory Y, Groner Y, Revel M (1983) Sequences involved in the regulated expression of the human interferon-B1 gene in recombinant SV40 DNA vectors replicating in monkey cells. EMBO J 2:325–332PubMedGoogle Scholar
  35. Maroteaux L, Herzog M, Soyer-Gobillard MO (1985) Molecular organization of dinoflagellate ribosomal DNA: evolutionary implications of the deduced 5.8S rRNA secondary structure. BioSystems 18:307–319CrossRefPubMedGoogle Scholar
  36. Maxam AM, Gilbert W (1977) A new method for sequencing DNA. Proc Natl Acad Sci USA 74:560–565Google Scholar
  37. Messing J (1983) New M13 vectors for cloning. Methods Enzymol 5:20–78Google Scholar
  38. Michot B, Bachellerie JP (1987) Comparisons of large subunit rRNAs reveal some eukaryote-specific elements of secondary structure. Biochimie 69:11–23CrossRefPubMedGoogle Scholar
  39. Michot B, Hassouna N, Bachellerie JP (1984) Secondary structure of mouse 28S rRNA and general model for the folding of the large RNA in eukaryotes. Nucleic Acids Res 12:4259–4279PubMedGoogle Scholar
  40. Otsuka T, Nomiyama H, Yoshida H, Kukita T, Kuara S, Sakaki Y (1983) Complete nucleotide sequence of the 26S rRNA gene ofPhysarum polycephalum: its significance in gene evolution. Proc Natl Acad Sci USA 80:3163–3167Google Scholar
  41. Ozaki T, Hoshikawa Y, Iida Y, Iwabuchi M (1984) Sequence analysis of the transcribed and 5′ non-transcribed regions of the ribosomal RNA gene inDictyostelium discoideum. Nucleic Acids Res 12:4171–4184PubMedGoogle Scholar
  42. Qu LH (1986) Structuration et evolution de l'ARN 28S chez les eukaryotes. Etude systématique de la région 5′ terminale. Dissertation 1273. Thesis, Université Paul Sabatier, Toulouse, FranceGoogle Scholar
  43. Qu LH, Michot B, Bachellerie JP (1983) Improved methods for structure probing in large RNAs: a rapid heterologous sequencing approach is coupled to the direct mapping of nuclease accessible sites. Implication to the 5′ terminal domains of eukaryotic 28S rRNA. Nucleic Acids Res 17:5903–5920Google Scholar
  44. Rae PMM (1970) The nature and processing of ribosomal ribonucleic acid in a dinoflagellate. J Cell Biol 46:106–113CrossRefPubMedGoogle Scholar
  45. Rae PMM (1973) 5-Hydroxymethyluracil in the DNA of a dinoflagellate. Proc Natl Acad Sci USA 70:1141–1145PubMedGoogle Scholar
  46. Rae PMM (1976) Hydroxymethyluracil in eukaryote DNA: a natural feature of the Pyrrophyta (dinoflagellates) Science 194:1062–1064PubMedGoogle Scholar
  47. Reddy R, Spector D, Henning D, Liu MH, Busch H (1983) Isolation and partial characterization of dinoflagellate U1–U6 small RNAs homologous to rat U small nuclear RNAs. J Biol Chem 258:13965–13969PubMedGoogle Scholar
  48. Ris H, Kubai DF (1974) An unusual mitotic mechanism in the parasitic protozoanSyndinium sp. J Cell Biol 60:702–720CrossRefPubMedGoogle Scholar
  49. Rizzo PJ (1979) RNA synthesis in isolated nucleus of the dinoflagellateCrypthecodinium cohnii. J Protozool 26:290–294PubMedGoogle Scholar
  50. Rizzo PJ (1981) Comparative aspects of basic chromatin proteins in dinoflagellates. BioSystems 14:433–444CrossRefPubMedGoogle Scholar
  51. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  52. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467PubMedGoogle Scholar
  53. Sollner-Webb B, Reeder R (1979) The nucleotide sequence of the initiation and termination sites for ribosomal RNA transcription inX. laevis. Cell 18:485–499CrossRefPubMedGoogle Scholar
  54. Soyer MO (1981) Presence of intranuclear microcables in the nucleoplasm of a primitive dinoflagellate. BioSystems 14:299–304CrossRefPubMedGoogle Scholar
  55. Soyer MO, Herzog M (1985) The native structure of dinoflagellate chromosomes. Involvement of structural RNA. Eur J Cell Biol 36:334–342Google Scholar
  56. Spector DL (1984) Dinoflagellate nuclei. In: Spector DL (ed) Dinoflagellates. Academic Press, New York, pp 1–15Google Scholar
  57. Spencer DF, Collings JC, Schnare MN, Gray MW (1987) Multiple spacer sequence in the nuclear large subunit ribosomal RNA gene ofCrithidia fasciculata. EMBO J 6:1063–1071Google Scholar
  58. Swofford DL, Maddison WP (1987) Reconstructing ancestral character states under Wagner parsimony. Math Biosci 87:199–229CrossRefGoogle Scholar
  59. Takaiwa F, Sugiura M (1982) The complete nucleotide sequence of a 23-S rRNA gene from tobacco chloroplasts. Eur J Biochem 124:13–19CrossRefPubMedGoogle Scholar
  60. Takaiwa F, Oono K, Iida Y, Sugiura M (1985) The complete nucleotide sequence of a rice 25S rRNA gene. Gene 37:255–259CrossRefPubMedGoogle Scholar
  61. Veldman JM, Klootwijk J, de Regt V, Planta RJ (1981) The primary and secondary structure of yeast 26S rRNA. Nucleic Acids Res 9:6935–6953PubMedGoogle Scholar
  62. Ware VC, Tague BW, Clark CG, Gourse RL, Brand RC, Gerbi SA (1983) Sequence analysis of 28S ribosomal DNA from the amphibianXenopus laevis. Nucleic Acids Res 11:7795–7817PubMedGoogle Scholar
  63. Werner E, Sohst S, Gropp F, Simon D, Wagner H, Kroger H (1984) Presence of poly(ADP-ribose) polymerase and poly(ADP-ribose) glycohydrolase in the dinoflagellateCrypthecodinium cohnii. Eur J Biochem 139:81–86CrossRefPubMedGoogle Scholar
  64. Zuker M, Stiegler P (1981) Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res 9:133–148PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc 1989

Authors and Affiliations

  • G. Lenaers
    • 1
  • L. Maroteaux
    • 1
  • B. Michot
    • 2
  • M. Herzog
    • 1
  1. 1.Département de Biologie Cellulaire et Moléculaire, Laboratoire AragoUniversité de Paris VI, CNRS UA 117Banyuls sur merFrance
  2. 2.Centre de Recherche de Biochimie et de Génetique Cellulaires du CNRSToulouse CedexFrance

Personalised recommendations