Journal of Molecular Evolution

, Volume 22, Issue 1, pp 91–94 | Cite as

Could life have arisen in the primitive atmosphere?

  • Siegfried Scherer
Letter to the Editor


A recently proposed model for the origin of prebiotic progenitors of life in particles suspended in a primitive, specially organized atmosphere is considered critically. It is concluded that the physical and chemical framework of the new hypothesis conflicts with the conditions necessary for the evolution of the progenitors of life in the atmosphere of the early Earth. Therefore this model seems not to be a reasonable alternative to the Oparin thesis.

Key words

Primitive atmosphere Self-organization Evolution Prebiological chemistry Primordial soup Oparin thesis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Berkner LV, Marshall LC (1965) On the origin and rise of oxygen in the Earth's atmosphere. J Atmosph Sci 22:225–261Google Scholar
  2. Berkner LV, Marshall LC (1966) Limitation on oxygen concentration in a primitive planetary atmosphere. J Atmosph Sci 23:133–143Google Scholar
  3. Bonner WA (1984) Experimental evidence for beta-decay as a source of chirality by enantiomer analysis. Orig Life 14:383–390PubMedGoogle Scholar
  4. Brinkmann RT (1969) Dissociation of water vapor and evolution of oxygen in the terrestrial atmosphere. J Geophys Res 74:5355–5368Google Scholar
  5. Broda E (1978) The evolution of the bioenergetic processes. Pergamon Press, OxfordGoogle Scholar
  6. Dimroth E, Kimberley MM (1976) Precambrian atmospheric oxygen: evidence in the sedimentary distribution of carbon, uranium and iron. Can J Earth Sci 13:1161–1185Google Scholar
  7. Eigen M, Schuster P (1979) The hypercycle: a principle of natural self-organization. Springer, Berlin Heidelberg New YorkGoogle Scholar
  8. Fox SW, Dose K (1977) Molecular evolution and the origin of life. Marcel Dekker, New York BaselGoogle Scholar
  9. Haldane JBS (1929) The origin of life. Rationalist Ann 148:3Google Scholar
  10. Hoyle F, Wickramashinge C (1977) Does epidemic disease come from space? New Scientist 76:402–404Google Scholar
  11. Kaplan RW (1978) Der Ursprung des Lebens: Biogenetik, ein Forschungsgebiet heutiger Naturwissenschaft. Thieme, StuttgartGoogle Scholar
  12. Keszthelyi L (1984) Parity violation as a source of chiratlity in nature. Orig Life (in press)Google Scholar
  13. Kuhn H, Waser J (1981) Molekulare Selbstorganisation und der Ursprung des Lebens. Angew Chem 93:495–515Google Scholar
  14. Lambert G (1984) Enzymic editing mechanisms and the origin of biological information transfer. J Theor Biol 107:387–403PubMedGoogle Scholar
  15. MacDonald GA (1972) Volcanoes. Prentice-Hall, Englewood Cliffs, New JerseyGoogle Scholar
  16. Miller SL, Orgel LE (1974) The origin of life on the Earth. Prentice-Hall, Englewood Cliffs, New JerseyGoogle Scholar
  17. Morowitz H, Sagan C (1967) Life in the clouds of Venus? Nature 215:1259–1260Google Scholar
  18. Nicolet M, Mange P (1954) The dissociation of oxygen in the high atmosphere. J Geophys Res 59:15–45Google Scholar
  19. Niemann HB, Hartle RE, Kasprazk WT, Spencer NW (1979) Venus upper atmosphere neutral composition: preliminary results from the pioneer Venus orbiter. Science 203:770–772Google Scholar
  20. Oparin AI (1924) Proiskhozdenic Zhizny. Moscow: Izd Moskovski RabochiiGoogle Scholar
  21. Peschek GA (1981) Phylogeny of photosynthesis and the evolution of electron transport: the bioenergetic backbone. Photosynthesis 15:553–554Google Scholar
  22. Pflug HD (1984) Early geological record and the origin of life. Naturwissenschaften 71:63–68Google Scholar
  23. Sagan C, Salpeter EE (1976) Particles, environments and possible ecologies in the Jovian atmosphere. Astrophys J Suppl Ser 32:737–775Google Scholar
  24. Scherer S (1983) Basic functional states in the evolution of light-driven cyclic electron transport. J Theor Biol 104:289–299Google Scholar
  25. Scherer S (1984) Transmembrane electron transport and the neutral theory of evolution. Origins of life 14:725–731PubMedGoogle Scholar
  26. Shklovskii IS, Sagan C (1966) Intelligent life in the universe. Holden-Day, San FranciscoGoogle Scholar
  27. Sze ND, McElroy MB (1975) Some problems in Venus' aeronomy. Planet Space Sci 23:763–786Google Scholar
  28. Urey HC (1959) Primitive planetary atmospheres and the origin of life. In: Oparin AI, Pasynskii AG, Braunstein AE, Pavlovskaya TE (eds) The origin of life on Earth. Pergamon Press, London New York Paris Los Angeles, pp 16–22Google Scholar
  29. Van Holde KE (1980) The origin of life: a thermodynamic critique. In: Halvorson HO, Van Holde KE (eds) The origins of life and evolution. Alan R Liss, New York, pp 31–46Google Scholar
  30. Vollmert B (1982) Bedingungen für die Bildung von Makromolekülen. In: Gitt W (ed) Am Anfang war die Information. Resch, Gräfelfing München, pp 79–113Google Scholar
  31. Vollmert B (1983) Die Lebewesen und ihre Makromoleküle. E Vollmert Verlag, KarlsruheGoogle Scholar
  32. Williams H, McBirney AR (1979) Volcanology. Freeman Cooper, San FranciscoGoogle Scholar
  33. Woese CR (1977) A comment on methanogenic bacteria and the primitive ecology. J Mol Evol 9:369–371PubMedGoogle Scholar
  34. Woese CR (1979) A proposal concerning the origin of life on the planet Earth. J Mol Evol 13:95–101PubMedGoogle Scholar
  35. Woese CR (1980) An alternative to the Oparin view of the primeval sequence. In: Halvorson HO, Van Holde KE (eds) The origins of life and evolution. Alan R Liss, New York, pp 65–76Google Scholar
  36. Woese CR, Fox GE (1977) Phylogenetic structure of the procaryotic domain: the primary kingdoms. Proc Natl Acad Sci USA 74:5088–5090PubMedGoogle Scholar
  37. Yockey HP (1981) Self organization origin of life scenarios and information theory. J Theor Biol 81:13–31Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Siegfried Scherer
    • 1
  1. 1.Lehrstuhl für Physiologie und Biochemie der PflanzenUniversität KonstanzKonstanzFRG

Personalised recommendations