Advertisement

General Relativity and Gravitation

, Volume 28, Issue 4, pp 413–439 | Cite as

The optical-mechanical analogy in general relativity: Exact Newtonian forms for the equations of motion of particles and photons

  • James Evans
  • Kamal K. Nandi
  • Anwarul Islam
Article

Abstract

In many metrics of physical interest, the gravitational field can be represented as an optical medium with an effective index of refraction. We show that, in such a metric, the orbits of both massive and massless particles are governed by a variational principle which involves the index of refraction and which assumes the form of Fermat's principle or of Maupertuis's principle. From this variational principle we derive exact equations of motion of Newtonian form which govern both massless and massive particles. These equations of motion are applied to some problems of physical interest.

Keywords

General Relativity Refraction Variational Principle Differential Geometry Gravitational Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Eddington, A.S. (1920).Space, Time and Gravitation (Cambridge Univ. Press, Cambridge).Google Scholar
  2. 2.
    Plebański, J. (1960).Phys. Rev. 118, 1396.Google Scholar
  3. 3.
    de Felice, F. (1971).Gen. Rel. Grav. 2, 347.Google Scholar
  4. 4.
    Wu X. and Xu C. (1988).Commun. Theor. Phys. (Beijing) 9, 119.Google Scholar
  5. 5.
    Evans, J., and Rosenquist, M. (1986).Amer. J. Phys. 54, 876.Google Scholar
  6. 6.
    Evans, J. (1990).Amer. J. Phys. 58, 773.Google Scholar
  7. 7.
    Nandi, K. and Islam, A. (1995).Amer. J. Phys. 63, 251.Google Scholar
  8. 8.
    Kovner, I. (1990).Astrophys. J. 351, 114.Google Scholar
  9. 9.
    Perlick, V. (1990).Class. Quant. Grav. 7, 1319.Google Scholar
  10. 10.
    Perlick, V. (1990).Class. Quant. Grav. 7, 1849.Google Scholar
  11. 11.
    Bel, Ll., and Martin, J. (1994).Gen. Rel. Grav. 26, 567.Google Scholar
  12. 12.
    Lanczos, C. (1986).The Variational Principles of Mechanics (4th ed., Dover, New York).Google Scholar
  13. 13.
    Weyl, H. (1917).Ann. Phys. (Leipzig) 54, 117.Google Scholar
  14. 14.
    Levi-Civita, T. (1917).Atti della Reale Accademia Dei Lincei, Ser. 5, Rendiconti, Class. di sc. fisiche, mat. e naturali 26, 458.Google Scholar
  15. 15.
    Levi-Civita, T. (1918).Nuovo Cimento 16, 105.Google Scholar
  16. 16.
    Straumann, N. (1984).General Relativity and Relativistic Astrophysics (Springer-Verlag, Berlin).Google Scholar
  17. 17.
    Atkinson, R. d'E. (1963).Proc. Roy. Soc. Lond. 272, 6.Google Scholar
  18. 18.
    Adler, R., Bazin, M., and Schiffer, M. (1965).Introduction to General Relativity (McGraw-Hill, New York).Google Scholar
  19. 19.
    Misner, C. W., Thome, K. S., and Wheeler, J. A. (1973).Gravitation (W. H. Freeman, San Francisco).Google Scholar
  20. 20.
    Sjodin, T. (1990). InPhysical Interpretations of Relativity Theory, M. C. Duffy, ed. (British Soc. Phil. Sc., London).Google Scholar
  21. 21.
    Bertotti, B. (1959).Phys. Rev. 116, 1331.Google Scholar
  22. 22.
    Halilsoy, M. (1993).Gen. Rel. Grav. 25, 275.Google Scholar
  23. 23.
    Halilsoy, M. (1993).Gen. Rel. Grav. 25, 975.Google Scholar
  24. 24.
    Soleng, H. H. (1994).Gen. Rel. Grav. 26, 149.Google Scholar
  25. 25.
    Dymnikova, I. (1992).Gen. Rel. Grav. 24, 235.Google Scholar
  26. 26.
    Goldman, I., Pérez-Mercader, J., Cooper, F., and Nieto, M. M. (1992).Phys. Lett. B 281, 219.Google Scholar
  27. 27.
    Tolman, R. C. (1934).Relativity, Thermodynamics and Cosmology (Oxford University Press, Oxford).Google Scholar
  28. 28.
    Born, M., and Wolf, E. (1980).Principles of Optics (6th ed., Pergamon Press, Oxford).Google Scholar
  29. 29.
    Narlikar, J. V. (1994).Amer. J. Phys. 62, 903.Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • James Evans
    • 1
  • Kamal K. Nandi
    • 2
  • Anwarul Islam
    • 3
  1. 1.Department of PhysicsUniversity of Puget SoundTacomaUSA
  2. 2.Department of MathematicsUniversity of North BengalDarjeeling (W.B.)India
  3. 3.Department of MathematicsGovernment Tolaram CollegeNarayanganj, DhakaBangladesh

Personalised recommendations