Advertisement

General Relativity and Gravitation

, Volume 27, Issue 5, pp 511–527 | Cite as

Detection of computer generated gravitational waves in numerical cosmologies

  • Beverly K. Berger
  • David Garfinkle
  • Vijaya Swamy
Article

Abstract

We propose to study the behavior of complicated numerical solutions to Einstein's equations for generic cosmologies by following the geodesic motion of a swarm of test particles. As an example, we consider a cylinder of test particles initially at rest in the plane symmetric Gowdy universe onT3×R. For a circle of test particles in the symmetry plane, the geodesic equations predict evolution of the circle into distortions and rotations of an ellipse as well as motion perpendicular to the plane. The evolutionary sequence of ellipses depends on the initial position of the circle of particles. We display snapshots of the evolution of the cylinder.

Keywords

Initial Position Differential Geometry Gravitational Wave Symmetry Plane Test Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berger, B. K., and Moncrief, V. (1993).Phys. Rev. D 48, 4676.Google Scholar
  2. 2.
    Moncrief, V. (1986).Ann. Phys. (NY) 167, 118.Google Scholar
  3. 3.
    Gowdy, R. H. (1971).Phys. Rev. Lett. 27, 826, E1102; Gowdy, R. H. (1974).Ann. Phys. (NY) 83, 203.Google Scholar
  4. 4.
    Berger, B. K., Garfinkle, D., Moncrief, V., and Swift, C. M. (1994).Proc. NATO Advanced Research Workshop on Deterministic Chaos in General Relativity, D. Hobill et al., eds. (Plenum, New York); Berger, B. K., Garfinkle, D., Grubišić, B., Moncrief, V., and Swamy, V. (1994).Proc. Lanzcos Symposium, J. D. Brown, M. T. Chu, D. C. Ellison, R. J. Plemmons, eds. (SIAM, Philadelphia, PA); Berger, B. K., Garfinkle, D., Moncrief, V. and Swift, C. M. (1994).Proc. AMS-CMS Special Session on Geometric Methods in Mathematical Physics, J. Beem and K. Duggal, eds. (A.M.S., Providence, R.I.).Google Scholar
  5. 5.
    Grubišić, B. and Moncrief, V. (1993).Phys. Rev. D 47, 2371.Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • Beverly K. Berger
    • 1
  • David Garfinkle
    • 1
  • Vijaya Swamy
    • 1
  1. 1.Physics DepartmentOakland UniversityRochesterUSA

Personalised recommendations