Advertisement

General Relativity and Gravitation

, Volume 28, Issue 5, pp 537–548 | Cite as

Some D type metric forms for spacetimes with shear, nongeodesic, and nondiverging principal null congruences

  • Jerzy Klemens Kowalczyński
Article
  • 48 Downloads

Abstract

In the context of a null tetrad formalism it is assumed that the two real vectors of the tetrad have neither expansion nor rotation and that they are nongeodesic and/or have shear. This assumption is rarely used in search of algebraically special spacetimes. General relations for the connection and for the Ricci and Weyl tensors are presented. An additional assumption that these vectors are principal leads to Petrov type D spacetimes, reducible in some cases to conformally flat ones. Twenty-two explicit metric forms, probably hitherto unknown, are found.

Keywords

General Relation Differential Geometry Additional Assumption Real Vector Weyl Tensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Romano, J. D. (1993).Gen. Rel. Grav. 25, 759.CrossRefGoogle Scholar
  2. 2.
    Ashtekar, A. (1986).Phys. Rev. Lett. 57, 2244.CrossRefGoogle Scholar
  3. 3.
    Ashtekar, A. (1987).Phys. Rev. D 36, 1587.Google Scholar
  4. 4.
    Ashtekar, A. (1991).Lectures on Non-Perturbative Quantum Gravity (World Scientific, Singapore).Google Scholar
  5. 5.
    Capovilla, R., Dell, J., and Jacobson, T. (1989).Phys. Rev. Lett. 63, 2325.CrossRefGoogle Scholar
  6. 6.
    Hehl, F. W., von der Heyde, P., Kerlick, G. D., and Nester, J. M. (1976).Rev. Mod. Phys. 48, 393.CrossRefGoogle Scholar
  7. 7.
    Hehl, F. W., Nitsch, J., and von der Heyde, P. (1980). (1980). InGeneral Relativity and Gravitation, A. Held, ed. (Plenum Press, New York), p.329.Google Scholar
  8. 8.
    Hayashi, K., and Shirafuji, T. (1980).Prog. Theor. Phys. 64, 866.Google Scholar
  9. 9.
    Grignani, G., and Nardelli, G. (1992).Phys. Rev. D 45, 2719.Google Scholar
  10. 10.
    Hehl, F. W. (1985).Found. Phys. 15, 451.CrossRefGoogle Scholar
  11. 11.
    Hayashi, K., and Shirafuji, T. (1979).Phys. Rev. D 19, 3524.Google Scholar
  12. 12.
    Mielke, E. W. (1992).Ann. Phys. (NY) 219, 78.CrossRefGoogle Scholar
  13. 13.
    MacDowell, S. W., and Mansouri, F. (1977).Phys. Rev. Lett. 38, 739.CrossRefGoogle Scholar
  14. 14.
    Nieto, J. A., Obregón, O., and Socorro, J. (1994).Phys. Rev. D 50, R3583.Google Scholar
  15. 15.
    Ashtekar, A., Romano, J. D., and Tate, R. S. (1989).Phys. Rev. D 40, 2572.Google Scholar
  16. 16.
    Jacobson, T., and Smolin, L. (1987).Phys. Lett. B 196, 39.Google Scholar
  17. 17.
    Chinea, F. J. (1989).Gen. Rel. Grav. 21, 21.CrossRefGoogle Scholar
  18. 18.
    Carroll, S. M., and Field, G. B. (1994).Phys. Rev. D 50, 3867.Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Jerzy Klemens Kowalczyński
    • 1
  1. 1.Institute of PhysicsPolish Academy of SciencesWarsawPoland

Personalised recommendations