Journal of Soviet Mathematics

, Volume 29, Issue 5, pp 1617–1630 | Cite as

Homogeneous spaces generated by the group of automorphisms of a Lie group

  • S. V. Vedernikov
Article
  • 26 Downloads

Abstract

The concept of a homogeneous space generated by the group of automorphisms of a given Lie group generalizes the well-known concept of aϕ-space. We study the properties of such spaces by analogy withϕ-spaces.

Keywords

Homogeneous Space 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    V. V. Balashchenko, “A manifold of linear complexes in IR as a ϕ-space,” 4th Republic Conf. of Mathematicians of Belorussia [in Russian], Minsk (1975), p. 73.Google Scholar
  2. 2.
    V. V. Balashchenko, “Regular ϕ-spaces of an orthogonal group and line geometry,” Minsk (1977).Google Scholar
  3. 3.
    V. V. Balashchenko, “Induced connections on regular ϕ-spaces of linear Lie groups,” 5th Baltic Geom. Conf. [in Russian], Druskininkai (1978), p. 8.Google Scholar
  4. 4.
    V. V. Balashchenko. “Induced connections on regular ϕ-spaces,” School on the Theory of Operators in Function Spaces [in Russian], Minsk (1978), p. 15–16.Google Scholar
  5. 5.
    V. V. Balashchenko, “Invariant equipments and induced connections on regular ϕ-spaces of linear Lie groups,” Dokl. Akad. Nauk BSSR,23, 209–212 (1979).Google Scholar
  6. 6.
    V. V. Balashchenko, “The geometry of homogeneous ϕ-spaces of linear Lie groups,” 7th All-Union Conf. on Modern Problems of Geometry [in Russian], Minsk (1979), p. 22.Google Scholar
  7. 7.
    V. V. Balashchenko, “On the geometry of regular ϕ-spaces of linear Lie groups,” Conf. Young Scientists and Specialists of BPI, BGU, MRTI [in Russian], Minsk (1980), pp. 3–4.Google Scholar
  8. 8.
    V. V. Balashchenko, “On homogeneous ϕ-spaces of unimodular groups,” All-Union Symp. on Symmetry Theory and Its Generalizations [in Russian], Kishinev (1980), pp. 1–2.Google Scholar
  9. 9.
    V. V. Balashchenko, “On special invariant equipments on homogeneous ϕ-spaces of linear Lie groups,” 5th Republic Conf. of Mathematicians of Belorussia [in Russian], Grodno (1980), p. 31.Google Scholar
  10. 10.
    V. V. Balashchenko, “On periodic homogeneous spaces of classical fundamental Lie groups,” in: Actual Problems of Social and Natural Sciences [in Russian], Vysheishaya Shkola, Minsk (1981), p. 52.Google Scholar
  11. 11.
    A. A. Burdun, “Operations on vectors in1R4 as morphisms of G-spaces,” 5th Baltic Geom. Conf. [in Russian], Druskininkai (1978), p. 16.Google Scholar
  12. 12.
    V. I. Vedernikov, “Symmetric spaces and conjugate connections,” Uch. Zap. Kazan. Univ.,125, 7–59 (1965).Google Scholar
  13. 13.
    V. I. Vedernikov and L. I. Vedernikova, “On conditions of belonging,” 5th Republic Conf. of Mathematicians of Belorussia [in Russian], Grodno (1980), p. 32.Google Scholar
  14. 14.
    V. I. Vedernikov and S. V. Vedernikov, “Regions of symmetric spaces generated by the group SL(2, C),” All-Union Conf. on Non-Euclidean Geom. “150 Years of Lobachevskii Geometry” [in Russian], Kazan (1976), p. 41.Google Scholar
  15. 15.
    V. I. Vedernikov and S. V. Vedernikov, “Homogeneous affinor spaces and planar nets in affine space,” 5th Baltic Geom Conf. [in Russian], Druskininkai (1978), p. 19.Google Scholar
  16. 16.
    V. I. Vedernikov, S. V. Vedernikov, and T. V. Tsvir, “Morphisms of symmetric spaces generated by a group of non-Euclidean motions,” All-Union Conf., Vilnius (1975), pp. 50–51.Google Scholar
  17. 17.
    V. I. Vedernikov and A. S. Fedenko, “Symmetric spaces and generalizations of them,” Algebra. Topologiya. Geometriya (Itogi i Nauki i Tekh. VINITI AN SSSR),14, 249–280 (1976).Google Scholar
  18. 18.
    S. V. Vedernikov, “Special morphisms of G-spaces,” Itogi Nauki i Tekh. VINITI AN SSSR, Prob. Geom.,7, 49–68 (1975).Google Scholar
  19. 19.
    S. V. Vedernikov, “The geometry of a fundamental space,” Diff. Geom. of Manifolds of Figures [in Russian] No. 10, Kaliningrad (1979), pp. 22–29.Google Scholar
  20. 20.
    S. V. Vedernikov, “Morphisms of a space of pairs and geometric extensions of them,” 7th All-Union Conf. on Modern Problems of Geometry [in Russian], Minsk (1979), p. 41.Google Scholar
  21. 21.
    S. V. Vedernikov, “Homogeneous spaces generated by an algebra and morphisms of them,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 11, 77–80 (1979).Google Scholar
  22. 22.
    S. V. Vedernikov, The Geometry of Spaces of Pairs [in Russian], Minsk (1980).Google Scholar
  23. 23.
    S. V. Vedernikov, “Invariant equipments of G-spaces generated by algebras,” 5th Republic Conf. of Mathematicians of Belorussia [in Russian], Grodno (1980), p. 33.Google Scholar
  24. 24.
    L. D. Dukhvalov, “Some symmetric spaces over an algebra of quasimatrices,” 5th Republic Conf. of Mathematicians of Belorussia [in Russian], Grodno (1980), p. 35.Google Scholar
  25. 25.
    L. D. Dukhvalov, “On some homogeneous spaces over an algebra of quasimatrices,” Vestn. Belorus. Univ., No. 2, 65–67 (1982).Google Scholar
  26. 26.
    E. Cartan, The Geometry of Lie Groups and Symmetric Spaces [Russian translation], IL, Moscow (1949).Google Scholar
  27. 27.
    B. P. Komrakov, “Homogeneous spaces generated by automorphisms, and invariant geometric structures,” Itogi Nauki i Tekh. VINITI AN SSSR, Prob. Geom.,7, 81–104 (1975).Google Scholar
  28. 28.
    N. A. Stepanov, “On the reductivity of factor spaces generated by endomorphisms of Lie groups,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 2, 74–79 (1967).Google Scholar
  29. 29.
    N. A. Stepanov, “Basic facts of the theory of ϕ-spaces,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 3, 88–95 (1967).Google Scholar
  30. 30.
    N. A. Stepanov, “Homogeneous 3-cyclic spaces,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 12, 65–74 (1967).Google Scholar
  31. 31.
    N. A. Stepanov, “ϕ-spaces in the case of the full linear group,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 3, 70–79 (1972).Google Scholar
  32. 32.
    N. A. Stepanov, “On a class of regular ϕ-spaces,” 4th Republic Conf. of Mathematicians of Belorussia [in Russian], Minsk (1975), pp. 86–87.Google Scholar
  33. 33.
    N. A. Stepanov, “Regular ϕ-spaces of the general linear group,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 6, 118–121 (1976).Google Scholar
  34. 34.
    N. A. Stepanov, “Invariant equipments of ϕ-spaces,” All-Union Conf. on Non-Euclidean Geometry “150 Years of Lobachevsk Geometry” [in Russian], Kazan (1976), p. 187.Google Scholar
  35. 35.
    N. A. Stepanov, “Invariant connections of equipped ϕ-spaces,” 7th All-Union Conf. on Modern Problems of Geometry [in Russian], Minsk (1979), p. 190.Google Scholar
  36. 36.
    N. A. Stepanov, “On ϕ-spaces that admit an invariant equipment,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 2, 63–70 (1982).Google Scholar
  37. 37.
    A. S. Fedenko, “Periodic automorphisms of classical compact groups,” Revue Roumaine Math. Pures Appl.,15, 1375–1378 (1970).Google Scholar
  38. 38.
    A. S. Fedenko, “Homogeneous ϕ-spaces and spaces with symmetries,” Vestn. Belorus. Univ., Ser. 1, No. 2, 25–30 (1972).Google Scholar
  39. 39.
    A. S. Fedenko, “Spaces defined by endomorphisms of Lie groups (Φ-spaces),” Trudy Geom. Sera. VINITI AN SSSR,4, 231–267 (1973).Google Scholar
  40. 40.
    A. S. Fedenko, “Periodic homogeneous spaces of the classical groups of series A,” Diff. Geom. of Manifolds of Figures [in Russian], No. 5, Kaliningrad (1974), pp. 184–200.Google Scholar
  41. 41.
    A. S. Fedenko, Spaces with Symmetries, Belorussian Univ., Minsk (1977).Google Scholar
  42. 42.
    I. V. Chekalov, Classification of Riemannian Homogeneous Spaces Generated by Automorphisms [in Russian], Minsk (1977).Google Scholar
  43. 43.
    P. A. Shirokov, “Constant fields of vectors and tensors in Riemannian spaces,” Izv. Fiz.- Mat. Obshch., Kazan (1925), pp. 86–114.Google Scholar
  44. 44.
    V. L. Shtukar, “Homogeneous Φ-spaces of a group of motions of Euclidean space En,” Vestn. Belorus. Univ., Ser. 1, No. 1, 82–83 (1976).Google Scholar
  45. 45.
    E. Cartan, “Sur une classe remarquable d'espaces de Riemann,” Bull. Soc. Math. France,54, 214–264 (1926).Google Scholar
  46. 46.
    J. A. Wolf and A. Gray, “Homogeneous spaces defined by Lie group automorphisms. I,” J. Diff. Geom.,2, 77–114 (1968).Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • S. V. Vedernikov

There are no affiliations available

Personalised recommendations