Siberian Mathematical Journal

, Volume 37, Issue 2, pp 335–343 | Cite as

On bisingular operators with measurable coefficients

  • L. I. Sazonov


Measurable Coefficient Bisingular Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. B. Simonenko, “A new general method for studying linear operator equations analogous to singular integral equations,” Izv. Akad. Nauk SSSR Ser. Mat.,29, I: 567–586; II: 757–782 (1965).Google Scholar
  2. 2.
    I. B. Simonenko, “Convolution operators over cones,” Mat. Sb.,74, 289–313 (1967).Google Scholar
  3. 3.
    I. B. Simonenko, “On infinite-rank discrete convolution operators,” in: Mathematical Studies [in Russian], KishinËv,3, No. 1, 108–122 (1968).Google Scholar
  4. 4.
    I. Ts. Gokhberg and N. Ya. Krupnik, Introduction to the Theory of One-Rank Singular Integral Operators [in Russian], Shtiintsa, KishinËv (1973).Google Scholar
  5. 5.
    V. S. Pilidi, “On infinite-rank singular operators,” Dokl. Akad. Nauk SSSR, No. 4, 787–789 (1974).Google Scholar
  6. 6.
    V. S. Pilidi, “The local principle in the theory of linear operator equations analogous to a bisingular integral equation,” in: Mathematical Analysis and Its Applications. Vol. 3 [in Russian], Rostovsk. Univ., Rostov-on-Don, 1971, pp. 81–412.Google Scholar
  7. 7.
    R. V. Duduchava, “Integral convolution operators with discontinuous symbol on a square,” Izv. Akad. Nauk SSSR Ser. Mat.,40, No. 2, 382–412 (1976).Google Scholar
  8. 8.
    R. V. Duduchava, “On bisingular integral operators with discontinuous coefficients,” Mat. Sb., No. 4, 584–609 (1976).Google Scholar
  9. 9.
    L. I. Sazonov, “Bisingular characteristic operators with discontinuous coefficients in the spaceL 2(ℝ),” Funktsional. Anal. i Prilozhen.,19, No. 2, 90–91 (1985).Google Scholar
  10. 10.
    M. A. Krasnosel'skii, P. P. Zabreiko, E. I. Pustyl'nik, and P. E. Sobolevskii, Integral Operators in Spaces of Summable Functions [in Russian], Nauka, Moscow (1966).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • L. I. Sazonov
    • 1
  1. 1.Rostov-na-Donu

Personalised recommendations