Siberian Mathematical Journal

, Volume 37, Issue 3, pp 430–435 | Cite as

The integral geometry problem for a family of cones in then-dimensional space

  • Akram Kh. Begmatov


Integral Geometry Geometry Problem Integral Geometry Problem 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. M. Lavrent'ev, V. G. Romanov, and S. P. Shishatskii, III-Posed Problems of Mathematical Physics and Analysis [in Russian], Nauka, Moscow (1980).Google Scholar
  2. 2.
    V. G. Romanov, Some Inverse Problems for the Equations of Hyperbolic Type [in Russian], Nauka, Novosibirsk (1972).Google Scholar
  3. 3.
    S. V. Uspenskii, “On reconstruction of a function given integrals over a certain class of conic surfaces,” Sibirsk. Mat. Zh.,18, No. 3, 675–684 (1977).Google Scholar
  4. 4.
    A. L. Bukhgeim, Volterra Equations and Inverse Problems [in Russian], Nauka, Novosibirsk (1983).Google Scholar
  5. 5.
    R. G. Mukhometov, “On a certain integral geometry problem,” in: Mathematical Problems of Geophysics [in Russian], Novosibirsk, Vychislit. Tsentr Sibirsk. Otdel. Akad. Nauk SSSR, 1975,6, No. 2, pp. 212–242.Google Scholar
  6. 6.
    M. M. Lavrent'ev and A. L. Bukhgeim, “On a certain class of second-order operator equations,” Funktsional. Anal, i Prilozhen.,7, No. 4, 44–53 (1973).Google Scholar
  7. 7.
    S. M. Nikol'skii, Approximation of Functions in Several Variables and Embedding Theorems [in Russian], Nauka, Moscow (1969).Google Scholar
  8. 8.
    I. S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Sums, Series, and Products [in Russian], Fizmatgiz, Moscow (1962).Google Scholar
  9. 9.
    S. G. Krein (ed.), Functional Analysis [in Russian], Nauka, Moscow (1972).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Akram Kh. Begmatov
    • 1
  1. 1.Samarkand

Personalised recommendations