General Relativity and Gravitation

, Volume 28, Issue 6, pp 701–706 | Cite as

Variable rest masses in 5-dimensional gravitation confronted with experimental data

  • Luis Anchordoqui
  • Graciela Birman
  • Santiago Perez Bergliaffa
  • Héctor Vucetich


Cosmological solutions of Einstein equation for a 5-dimensional space time, in the case of a dust-filled universe, are presented. With these solutions we are able to test a hypothetical relation between the rest mass of a particle and the 5th dimension. Comparison with experiment strongly refutes the implied dependence of the rest mass on the cosmological time.


Experimental Data Differential Geometry Einstein Equation Space Time Rest Mass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chodos, A., and Detweiler, S. (1980).Phys. Rev. D 21, 2167; Freund, P. G. O. (1982).Nucl. Phys. B 209, 146.Google Scholar
  2. 2.
    van Niewenhuizen, P. (1981).Phys. Rep. 68, 189.Google Scholar
  3. 3.
    Green, M. B., Schwartz, J. H., and Witten, E. (1987).Superstring Theory (Cambridge monographs on mathematical physics, Cambridge University Press, Cambridge).Google Scholar
  4. 4.
    Majumdar, A. S., and Sethi, S. K. (1992).Phys. Rev. D 46, 5315.Google Scholar
  5. 5.
    Kaluza, T. (1921).Sitzungsber. Preuss. Akad. Wiss. 33, 966.Google Scholar
  6. 6.
    Klein, O. (1926).Z. Phys. 37, 895.CrossRefGoogle Scholar
  7. 7.
    Wesson, P. S. (1984).Gen. Rel. Grav. 16, 193.CrossRefGoogle Scholar
  8. 8.
    Mashhoon, B., Liu, H., Wesson, P. S. (1994).Phys. Lett. B 331, 305.Google Scholar
  9. 9.
    Ma, G. (1990).Phys. Lett. A 143, 183.Google Scholar
  10. 10.
    Wesson, P. S. (1992).Mod. Phys. Lett. A 7, 921.Google Scholar
  11. 11.
    Wesson, P. S., Ponce de Leon, J. (1992).J. Math. Phys. 33, 3883.CrossRefGoogle Scholar
  12. 12.
    Mach, E. (1983).The Science of Mechanics (2nd ed., Open Court Publishing Co., La Salle, Ill.).Google Scholar
  13. 13.
    Grøn, Ø., and Soleng, H. (1988).Gen. Rel. Grav. 20, 1115.CrossRefGoogle Scholar
  14. 14.
    Wesson, P. S. (1990).Gen. Rel. Grav. 22, 707.CrossRefGoogle Scholar
  15. 15.
    Mann, R. B., and Vincent, D. E. (1985).Phys. Lett. A 107, 75.Google Scholar
  16. 16.
    Review of Particle Properties (1992).Phys. Rev. D 45, S1.Google Scholar
  17. 17.
    Sisterna, P., and Vucetich, H. (1991).Phys. Rev. D 44, 3096.Google Scholar
  18. 18.
    McElhimmy, M. W., Taylor, S. R., and Stephenson, D. (1978).Nature (London) 271, 316.Google Scholar
  19. 19.
    Weterhill, G. W. (1975).Ann. Rev. Nucl. Sci. 25, 283.Google Scholar
  20. 20.
    Shlyakhter, A. I. (1976)Nature (London) 264, 340.Google Scholar
  21. 21.
    Coles, P., and Ellis, G. (1994).Nature (London) 370, 609.Google Scholar
  22. 22.
    Turner, M. S. (1992). Talk presented at the NAS Special Colloquium on Physical Cosmology, Irvine, March 1992.Google Scholar
  23. 23.
    Kolb, E. W., Turner, M. S. (1990).The Early Universe (Addison-Wesley, New York).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Luis Anchordoqui
    • 1
  • Graciela Birman
    • 2
  • Santiago Perez Bergliaffa
    • 1
  • Héctor Vucetich
    • 1
  1. 1.Laboratorio de Física Teórica, Departamento de FísicaU.N.L.P., c.c. 67La PlataArgentina
  2. 2.Departamento de Matemática, Facultad de Cíencias ExactasU.N.C.P.B.A.TandilArgentina

Personalised recommendations