General Relativity and Gravitation

, Volume 28, Issue 7, pp 843–854 | Cite as

Critical behavior of extremal Kerr-Newman black holes

  • Osamu Kaburaki


The previously suggested existence of second-order phase transitions in a series of Kerr-Newman holes is re-examined in the framework of equilibrium black-hole thermodynamics, to distinguish a true transition from another confusing phenomenon. By adopting a physical interpretation unique to the black-hole thermodynamics, various critical exponents are calculated for one side of the transition which is shown actually very likely to occur at the extremal limit.


Phase Transition Black Hole Differential Geometry Physical Interpretation Critical Exponent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Davies, P. C. W. (1977).Proc. R. Soc. London A 353, 499.Google Scholar
  2. 2.
    Hut, P. (1977).Mon. Not. R. Astron. Soc. 180, 379.Google Scholar
  3. 3.
    Sokołowski, L. M., and Mazur, P. (1980).J. Phys. A 13, 1113.Google Scholar
  4. 4.
    Curir, A. (1981).Gen. Rel. Grav. 13, 417; (1981).ibid. 13 1177.Google Scholar
  5. 5.
    Pavón, D., and Rubí, J. M. (1988).Phys. Rev. D 37, 2052.Google Scholar
  6. 6.
    Pavón, D. (1991).Phys. Rev. D 43, 2495.Google Scholar
  7. 7.
    Landau, L., and Lifshitz, E. M. (1980).Statistical Physics (Pergamon Press, New York).Google Scholar
  8. 8.
    Lau, Y. K. (1994).Phys. Lett. A 186, 41.Google Scholar
  9. 9.
    Lousto, C. O. (1993).Nucl. Phys. B 410, 155.Google Scholar
  10. 10.
    Kaburaki, O., Okamoto, I., and Katz, J. (1993).Phys. Rev. D 47, 2234.Google Scholar
  11. 11.
    Katz, J., Okamoto, I., and Kaburaki, O. (1993).Class. Quantum Grav. 10, 1323.Google Scholar
  12. 12.
    Kaburaki, O. (1994).Phys. Lett. A 185, 21.Google Scholar
  13. 13.
    Kaburaki, O. (1993). InProc. 2nd Workshop on General Relativity and Gravitation, Tokyo, K. Maeda et al., eds., p.277.Google Scholar
  14. 14.
    Davies, P. C. W. (1978).Rep. Prog. Phys. 41, 1313; Landsberg, P. T. (1992). InBlack Hole Physics, V. De. Sabbata and Z. Zhang, eds. (Kluwer Academic, Dordrecht), p.99.Google Scholar
  15. 15.
    Poincaré, H. (1885).Acta Math. 7, 259.Google Scholar
  16. 16.
    Katz, J. (1978).Mon. Not. R. Astr. Soc. 183, 765; (1979).ibid.189, 817.Google Scholar
  17. 17.
    Callen, H. B. (1985).Thermodynamics and an Introduction to Thermostatistics (John Wiley, New York).Google Scholar
  18. 18.
    Thorne, K. S., Price, R. H., and Macdonald, D. A. (1986).Black Holes: The Membrane Paradigm (Yale University Press, New Haven).Google Scholar
  19. 19.
    Kaburaki, O. (1994). InProc. 3rd Workshop on General Relativity and Gravitation, Tokyo, K. Maeda et al., eds., p.107.Google Scholar
  20. 20.
    Kaburaki, O. (1996). InProc. VII Marcel Grossmann Meeting, Stanford, 1994, R. Jantzen, M. Keiser, eds. (World Scientific, Singapore).Google Scholar
  21. 21.
    Pavón, D., and Rubí, J. M. (1985).Gen. Rel. Grav. 17, 387.Google Scholar
  22. 22.
    Curir, A. (1979).Nuovo Cimento B 51, 262; Curir, A., and Francaviglia, M. (1979).ibid.B 52, 165.Google Scholar
  23. 23.
    Traschen, J. (1994).Phys. Rev. D 50, 7144.Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Osamu Kaburaki
    • 1
  1. 1.Astronomical Institute, Graduate School of ScienceTohoku UniversitySendaiJapan

Personalised recommendations