Communications in Mathematical Physics

, Volume 171, Issue 3, pp 547–588 | Cite as

A Lax representation for the vertex operator and the central extension

  • M. Adler
  • T. Shiota
  • P. van Moerbeke
Article

Abstract

Integrable hierarchies, viewed as isospectral deformations of an operatorL may admit symmetries; they are time-dependent vector fields, transversal to and commuting with the hierarchy and forming an algebra. In this work, the commutation relations for the symmetries are shown to be based on a non-commutative Lie algebra splitting theorem. The symmetries, viewed as vector fields onL, are expressed in terms of a Lax pair.

This study introduces a “generating symmetry”, a generating function for symmetries, both of the KP equation (continuous), and the two-dimensional Toda lattice (discrete), in terms ofL and an operatorM, introduced by Orlov and Schulman, such that [L, M] = 1. This “generating symmetry”, acting on the wave function (or wave vector) lifts to a vertex operatorà la Date-Jimbo-Kashiwara-Miwa, acting on the τ-function (or τ-vector). Lifting the algebra of symmetries, acting on wave functions, to an algebra of symmetries, acting on τ-functions, amounts to passing from an algebra to its central extension.

This provides a handy technology to find the constraints satisfied by various matrix integrals, arising in the context of 2d-quantum gravity and moduli space topology. The point is to first prove the vanishing of symmetries at the Lax pair level, which usually turns out to be elementary and conceptual, and then use the lifting above to get the subalgebra of vanishing symmetries for the τ-function (or τ-vectors).

Keywords

Modulus Space Vertex Operator Central Extension Toda Lattice Matrix Integral 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A-vM0] Adler, M., van Moerbeke, P.: Completely integrable systems, Euclidean Lie algebras, and curves. Adv. Math.38, 267–317 (1980)Google Scholar
  2. [A-vM1] Adler, M., van Moerbeke, P.: A matrix integral solution to two-dimensionalW p-Gravity. Commun. Math. Phys.147, 25–56 (1992)Google Scholar
  3. [A-vM2] Adler, M., van Moerbeke, P.: Matrix integrals, Toda symmetries, Virasoro constraints and orthogonal polynomials. To appear in Duke Math J. (1995)Google Scholar
  4. [A-vm3] Adler, M., van Moerbeke, P.: Two-matrix integrals and two-Toda symmetries. To appearGoogle Scholar
  5. [A-Sh-vM] Adler, M., Shiota, T., van Moerbeke, P.: From thew -algebra to its central extension: a τ-function approach. To appear in Physics Letters A. (1994)Google Scholar
  6. [A-K] Aoyama, S., Kodama, Y.: A generalized Sato equation and theW algebra. Phys. Lett.B278 56–62 (1992)Google Scholar
  7. [BX] Bonora, L., Xiong, C.S.: Matrix models without scaling limit. SISSA reprintGoogle Scholar
  8. [B-K] Brézin, E., Kazakov, V.A.: Exactly solvable field theories of closed strings. Phys. Lett.236B, 144–150 (1990)Google Scholar
  9. [DJKM] Date, E., Jimbo, M., Kashiwara, M., Miwa, T.: Transformation groups for soliton equations. In: Proc. RIMS Symp. Nonlinear integrable systems-Classical theory and quantum theory (Kyoto 1981), Singapore: World Scientific, 1983, pp. 39–119Google Scholar
  10. [D1] Dickey, L.: Soliton equations and integrable systems. Singapore. World Scientific, 1991Google Scholar
  11. [D2] Dickey, L.: Lectures on classicalW-algebras. Cortona, Italy 1993Google Scholar
  12. [D3] Dickey, L.A.: On additional symmetries of the KP hierarchy and Sato's Bäcklund transformation. Commun. Math. Phys.Google Scholar
  13. [DG] Duistermaat, J.J., Grünbaum, F.A.: Differential equations in the spectral parameter. Commun. Math. Phys.103, 177–240 (1986)Google Scholar
  14. [Fa] Fastré, J.: Boson-correspondence for W-algebras, Bäcklund-Darboux transformations and the equation [L, P]=L n. University of Louvain, doctoral dissertation (1993)Google Scholar
  15. [Fu] Fuchssteiner, B.: Mastersymmetries, Higher Order Time-Dependent Symmetries and Conserved Densities of Nonlinear Evolution Equations. Prog. Theor. Phys.70, No. 6, 1508–1522 (1983)Google Scholar
  16. [FKN] Fukuma, M., Kawai, H., Nakayama, R.: Infinite dimensional Grassmannian structure of two-dimensional Quantum gravity. Commun. Math. Phys.143, 371–403 (1992)Google Scholar
  17. [GMO] Gerasimov, A., Marshakov, A., Mironov, A., Morozov, A., Orlov, A.: Matrix models of Two-dimensional gravity and Toda theory. Nucl. Phys.B357, 565–618 (1991)Google Scholar
  18. [Gr-OS] Grinevich, P.G., Orlov, A.Yu., Schulman, E.I.: On the Symmetries of the integrable system. In: Modern development of the Soliton theory, ed. A. Fokas, V.E. Zakharov, (1992)Google Scholar
  19. [Gr-O] Grinevich, P.G., Orlov, A.Yu.: Flag spaces in KP theory and Virasoro action on DetD j and Segal-Wilson tau-function. In: Modern problems of Quantum Field theory, Belavin, Zamolodchikov, Klimuk (eds.) Berlin, Heidelberg, New York: Springer, 1989Google Scholar
  20. [Ka] Kac, V.G.: Infinite-dimensional Lie algebras. 3rd edition, Cambridge: Cambridge Univ. Press, 1990Google Scholar
  21. [K-R] Kac, V.G., Raina, A.K.: Bombay lectures on highest weight representations of infinite dimensional Lie Algebras. Adv. Series Math. Phys. vol. 2, 1987Google Scholar
  22. [K-S] Kac, V.G., Schwarz, A.: Geometric interpretation of partition function of 2D gravity. Phys. Lett.257B, 329–334 (1991)Google Scholar
  23. [K] Kontsevich, M.: Intersection theory on the moduli space of curves and the matrix Airy function. Commun. Math. Phys.147, 1–23 (1992)Google Scholar
  24. [M-Z] Magri, F., Zubelli, J.P.: Differential equations in the spectral parameter, Darboux transformations and a hierarchy of master symmetries for KdV. Commun. Math. Phys.141 (2), 329–352, (1991)Google Scholar
  25. [Me] Mehta, M.L.: A method of integration over matrix variables. Commun. Math. Phys.79, 327–340 (1981)Google Scholar
  26. [N] Niedermaier, M.:W 1+α as a symmetry ofGL α-orbits, preprint 1993Google Scholar
  27. [O-Fa] Oevel, W., Falck, M.: Master Symmetries for Finite-Dimensional Integrable Systems: the Calogero-Moser system. Prog. Theor. Phys.75, 1328–1341 (1986)Google Scholar
  28. [O-Fu] Oevel, W., Fuchssteiner, B.: Explicit formulas for symmetries and conservation laws of the Kadomtsev-Petviashvili equation. Phys. Lett.88A, 323–327 (1982)Google Scholar
  29. [O-F-B] Oevel, G., Fuchssteiner, B., Blaszak, M.: Action-Angle Representation of Multisolitons by Potentials of Mastersymmetries. Prog. Theo. Phys.83, N0 3, 395–413 (1990)Google Scholar
  30. [O] Orlov, A.Y.: Vertex operator,\(\bar \partial \)-problem, symmetries, variational identities and Hamiltonian formalism for 2+1 integrable systems. In: Proc. Kiev Intern. Workshop “Plasma Theory and Non-linear and Turbulent Processes in Physics”, Baryakhtar (ed.) Singapore: World Scientific, 1988Google Scholar
  31. [O-Sc] Orlov, A.Y., Schulman, E.I.: Additional Symmetries for Integrable and Conformal Algebra Representation. Lett. Math. Phys.12, 171–179 (1986)Google Scholar
  32. [Sa1] Sato, M.: Soliton equations and the universal Grassmann manifold (by Noumi in Japanese). Math. Lect. Note Ser. No.18, Sophia University, Tokyo, 1984Google Scholar
  33. [Sa2] Sato, M.: The KP Hierarchy and Infinite-Dimensional Grassmann Manifolds. Proceedings of Symposia in Pure Mathematics, Vol.149 Part 1, (1989) pp. 51–66Google Scholar
  34. [S-S] Sato, M., and Sato, Y.: Soliton equations as dynamical systems on infinite dimensional Grassmann manifolds. Lect. notes in Num. Appl. Anal. Vol.5, 259–271 (1982)Google Scholar
  35. [Sc] Schwarz, A.: On solutions to the string equation. Mod. Phys. Lett.A 6, 2713–2725 (1991)Google Scholar
  36. [Sh] Shiota, T.: Characterization of Jacobian varieties in terms of soliton equations. Invent. Math.83, 333–382 (1986)Google Scholar
  37. [T-T] Takasaki, K., Takebe, T.: Integrable hierarchies and dispersionless limit. Reviews in Mathematical Physics, to appearGoogle Scholar
  38. [U-T] Ueno, K., Takasaki, K.: Toda Lattice Hierarchy. Adv. Studies in Pure Math., Vol.4, 1–95 (1984)Google Scholar
  39. [v1] van de Leur, J.: TheW 1+α(gl s)-symmetries of thes-component KP-hierarchy, preprint 1994Google Scholar
  40. [v2] van de Leur, J.: The Adler-Shiota-van Moerbeke formula for the BKP-hierarchy, preprint 1994Google Scholar
  41. [vM-M] van Moerbeke, P., Mumford, D.: The spectrum of difference operators and algebraic curves. Acta Math.143, 93–154 (1979)Google Scholar
  42. [vM] van Moerbeke, P.: Integrable foundations of string theory. CIMPA Summer School at Sophia-Antipolis (June 1991), Lectures on Integrable systems, Ed.: O. Babelon, P. Cartier, Y. Kosmann-Schwarzbach, World Scientific, 1994, pp. 163–267Google Scholar
  43. [W2] Witten, E.: On the Kontsevich Model and other Models of Two Dimensional Gravity. IASSNS-HEP-91/24 (6/1991), Proceedings of the XXth International Conference on Differential Geometric Methods in Theoretical Physics, Vol.1,2 (New York, 1991), 176–216, World Sci. Publishing, River Edge, NJ 1992Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • M. Adler
    • 1
  • T. Shiota
    • 2
  • P. van Moerbeke
    • 3
    • 4
  1. 1.Department of MathematicsBrandeis UniversityWalthamUSA
  2. 2.Department of MathematicsKyoto UniversityKyotoJapan
  3. 3.Université de LouvainLouvain-la-NeuveBelgium
  4. 4.Department of MathematicsBrandeis UniversityWalthamUSA

Personalised recommendations