Siberian Mathematical Journal

, Volume 35, Issue 5, pp 1022–1026 | Cite as

On operator treatment of a Stokeslet

  • I. Yu. Popov


Operator Treatment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Hasimoto and O. Sano, “Stokeslets and eddies in creeping flow,” Ann. Rev. Fluid Mech.,12, 335–363 (1980).Google Scholar
  2. 2.
    G. J. Hancock, “The self-propulsion of microscopic organisms through liquids,” Proc. Roy. Soc. London Ser. A,217, 96–121 (1953).Google Scholar
  3. 3.
    G. K. Batchelor, “Slender-body theory for particles of arbitrary cross-section in Stokes flow,” J. Fluid Mech.,44, 419–440 (1970).Google Scholar
  4. 4.
    E. Fermi, “Sopra lo spostamento per pressione delle righe elevate delle serie spettrali,” Nuovo Cimento,11, 157–166 (1934).Google Scholar
  5. 5.
    E. Fermi, “Sul moto dei neutroni nelle sostanze idrogenate,” Ric. Sci.,7, 13–52 (1936).Google Scholar
  6. 6.
    Yu. N. Demkov and V. N. Ostrovskiî, Methods of Potentials with Zero Radius in Atomic Physics [in Russian], Leningrad. Univ., Leningrad (1975).Google Scholar
  7. 7.
    F. A. Berezin and L. D. Faddeev, “A remark on the Schrödinger equation with singular potential,” Dokl. Akad. Nauk SSSR,137, No. 5, 1011–1014 (1961).Google Scholar
  8. 8.
    B. S. Pavlov, “The extension theory and explicitly solvable models,” Uspekhi Mat. Nauk,42, No. 6, 99–131 (1987).Google Scholar
  9. 9.
    I. Yu. Popov, “The extension theory and diffraction problems,” Lecture Notes in Phys., No. 324, 218–229 (1989).Google Scholar
  10. 10.
    I. Yu. Popov, “Justification of a model of zero width slots for the Dirichlet problem,” Sibirsk. Mat. Zh.,30, No. 3, 225–230 (1989).Google Scholar
  11. 11.
    B. S. Pavlov and I. Yu. Popov, “An acoustic model of zero width slots and hydrodynamic stability of a boundary layer,” Teoret. Mat. Fiz.,86, No. 3, 391–401 (1991).Google Scholar
  12. 12.
    Yu. E. Karpeshina and B. S. Pavlov, “Interaction with zero radius for the biharmonic and polyharmonic equations,” Mat. Zametki,40, No. 1, 49–59 (1986).Google Scholar
  13. 13.
    I. Proudman and J. R. A. Pearson, “Expansions at small Reynolds numbers for the flow past a sphere and a circular cylinder,” J. Fluid Mech.,2, 237–262 (1957).Google Scholar
  14. 14.
    F. A. Berezin, “On the Lee model,” Mat. Sb.,60, No. 4, 425–446 (1963).Google Scholar
  15. 15.
    Yu. G. Shondin, “Quantum mechanical models in ℝn connected with extensions of the energy operator in a Pontryagin space,” Teoret. Mat. Fiz.,74, No. 3, 331–344 (1988).Google Scholar
  16. 16.
    I. Yu. Popov, “The Helmholtz resonator and the operator extension theory in a space with indefinite metric,” Mat. Sb.,183, No. 3, 2–38 (1992).Google Scholar
  17. 17.
    A. A. Kiselëv and I. Yu. Popov, “Higher moments in a model of zero width slots,” Teoret. Mat. Fiz.,89, No. 1, 11–17 (1991).Google Scholar
  18. 18.
    T. Ya. Azizov and I. S. Iokhvidov, Foundations of the Theory of Linear Operators in Spaces with Indefinite Metric [in Russian], Nauka, Moscow (1986).Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • I. Yu. Popov
    • 1
  1. 1.St. Peterburg

Personalised recommendations