Siberian Mathematical Journal

, Volume 35, Issue 5, pp 997–1001 | Cite as

A model problem of vortical surface waves

  • V. I. Nalimov


Surface Wave Model Problem Vortical Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. I. Nalimov, “A priori estimates for the solutions to elliptic equations in the class of analytic functions and their applications to the Cauchy-Poisson problem,” Dokl. Akad. Nauk SSSR,189, No. 1, 45–49 (1969).Google Scholar
  2. 2.
    L. V. Ovsjannikov, “Nonlocal Cauchy problems in fluid dynamics,” Actes du Congr. Intern. des Mathematiciens, No. 3, Gauthier-Villas, Paris (1971).Google Scholar
  3. 3.
    M. Shinbrot, “The initial value problem for surface waves under gravity. I: The simplest case,” Indiana Univ. Math. J.,25, No. 3, 281–300 (1976).Google Scholar
  4. 4.
    V. I. Nalimov, “The Cauchy-Poisson problem,” Dinamika Sploshn. Sredy (Novosibirsk),18, 104–210 (1974).Google Scholar
  5. 5.
    M. Yoshihara, “Gravity waves on the free surface of an incompressible perfect fluid of finite depth,” Kyoto Univ. Math.,18, 49–96 (1982).Google Scholar
  6. 6.
    L. V. Ovsyannikov, N. I. Makarenko et al. Nonlinear Problems in the Theory of Surface and Interval Waves [in Russian], Nauka, Novosibirsk (1985).Google Scholar
  7. 7.
    J. J. Jr. Stoker, “Water waves: The mathematical theory with applications,” Pure Appl. Math.,4 (1957).Google Scholar
  8. 8.
    V. I. Nalimov, “A new model for the Cauchy-Poisson problem,” Dinamika Sploshn. Sredy (Novosibirsk),15 (1973).Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • V. I. Nalimov
    • 1
  1. 1.Omsk

Personalised recommendations