Advertisement

Communications in Mathematical Physics

, Volume 171, Issue 1, pp 87–98 | Cite as

Fusion in theW3 algebra

  • G. M. T. Watts
Article

Abstract

We develop the notions of fusion for representations of theWA2 algebra along the lines of Feigin and Fuchs. We present some explicit calculations for aWA2 minimal model.

Keywords

Neural Network Statistical Physic Complex System Nonlinear Dynamics Quantum Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Belavin, A.A., Polyakov, A.M., Zamolodchikov, A.B.: Nucl. Phys.B241, 333 (1984)CrossRefGoogle Scholar
  2. 2.
    Feigin, B.L., Fuchs, D.B.: J. Geom. Phys.5, 209 (1988)CrossRefGoogle Scholar
  3. 3.
    Zamolodchikov, A.B.: Theor. Math. Phys.65, 347 (1985)CrossRefGoogle Scholar
  4. 4.
    Watts, G.M.T.: Nucl. Phys.B326, 648 (1989), erratum Nucl. Phys.B336, 720 (1989)CrossRefGoogle Scholar
  5. 5.
    Fateev, V.A., Zamolodchikov, A.B.: Nucl. Phys.B280, [FS18], 644 (1987)CrossRefGoogle Scholar
  6. 6.
    Fateev, V.A., Luk'yanov, S.L.: Int. J. Mod. Phys.A3, 507 (1988), Sov. Sci. Rev.A15, 1 (1990)CrossRefGoogle Scholar
  7. 7.
    Bais, F.A., Bouwknegt, P., Schoutens, K., Surridge, M.: Nucl. Phys.B304, 348 (1988); Nucl. Phys.B304, 37 (1988)CrossRefGoogle Scholar
  8. 8.
    Bowcock, P., Watts, G.M.T.: Theor. Math. Phys.98, 350 (1994)CrossRefGoogle Scholar
  9. 9.
    Nahm, W.: Quasi-rational fusion products. Bonn University Preprint hepth/9402039Google Scholar
  10. 10.
    Feigin, B.L., Nakanishi, T., Ooguri, H.: Int. J. Mod. Phys.A7, (S1A), 217 (1992)CrossRefGoogle Scholar
  11. 11.
    Bowcock, P., Watts, G.M.T.: Phys. Lett.297B, 282 (1992)Google Scholar
  12. 12.
    Feigin, B.L., Fuchs, D.B.: Representations of the virasoro algebra. Repts. Dept. Math. Stockholm Univ. (1986), published in ‘Representations of infinite-dimensional Lie groups and Lie algebras’, eds. Vershik, A., Zhelobenko, D., London: Gordon and Breach, 1989Google Scholar
  13. 13.
    de Vos, K., van Driel, P.: The Kazhdan-Lusztig conjecture for finite W-algebras. DAMTP Preprint DAMTP-93-66 UCLA/93/TEP/46, hepth/9312016Google Scholar
  14. 14.
    Bajnok, Z.: Phys. Lett.329B, 225 (1994)Google Scholar
  15. 15.
    Frenkel, E.V.: Private communicationGoogle Scholar
  16. 16.
    Gaberdiel, M.: Nucl. Phys.B417, 130 (1994)CrossRefGoogle Scholar
  17. 17.
    Frenkel, E.V., Kac, V., Wakimoto, M.: Commun. Math. Phys.147, 295 (1992)Google Scholar
  18. 18.
    Zhu, Y.: Vertex operator algebras, elliptic functions and modular forms, Ph.D. dissertation, Yale Univ., (1990)Google Scholar
  19. 19.
    Feigin, F., Frenkel, E.V.: Adv. Sov. Math.16, 139–148 (1993)Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • G. M. T. Watts
    • 1
    • 2
  1. 1.St. John's CollegeCambridgeU.K.
  2. 2.DAMTPUniversity of CambridgeCambridgeU.K.

Personalised recommendations