Advertisement

Communications in Mathematical Physics

, Volume 179, Issue 1, pp 61–120 | Cite as

Conformal field theories, representations and lattice constructions

  • L. Dolan
  • P. Goddard
  • P. Montague
Article

Abstract

An account is given of the structure and representations of chiral bosonic meromorphic conformal field theories (CFT's), and, in particular, the conditions under which such a CFT may be extended by a representation to form a new theory. This general approach is illustrated by considering the untwisted andZ2-twisted theories, ℋ(Λ) and\(\tilde H(\Lambda )\) respectively, which may be constructed from a suitable even Euclidean lattice Λ. Similarly, one may construct lattices\(\Lambda _C \) and\(\tilde \Lambda _C \) by analogous constructions from a doubly-even binary code\(C\). In the case when\(C\) is self-dual, the corresponding lattices are also. Similarly, ℋ(Λ) and\(\tilde H(\Lambda )\) are self-dual if and only if Λ is. We show that\(H(\Lambda _C )\) has a natural “triality” structure, which induces an isomorphism\(H(\tilde \Lambda _C )\)\(\tilde H(\Lambda _C )\) and also a triality structure on\(\tilde H(\tilde \Lambda _C )\). For\(C\) the Golay code,\(\tilde \Lambda _C \) is the Leech lattice, and the triality on\(\tilde H(\tilde \Lambda _C )\) is the symmetry which extends the natural action of (an extension of) Conway's group on this theory to the Monster, so setting triality and Frenkel, Lepowsky and Meurman's construction of the natural Monster module in a more general context. The results also serve to shed some light on the classification of self-dual CFT's. We find that of the 48 theories ℋ(Λ) and\(\tilde H(\Lambda )\) with central charge 24 that there are 39 distinct ones, and further that all 9 coincidences are accounted for by the isomorphism detailed above, induced by the existence of a doubly-even self-dual binary code.

Keywords

Neural Network Statistical Physic Field Theory Complex System Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dolan, L., Goddard, P., Montague, P.: Phys. Lett.B236, 165 (1990)Google Scholar
  2. 2.
    Verlinde, E.: Nucl. Phys.B300, 360 (1988)CrossRefGoogle Scholar
  3. 3.
    Ginsparg, P.: Applied Conformal Field Theory. Preprint HUTP-88/A054 (1988)Google Scholar
  4. 4.
    Moore, G., Seiberg, N.: Lectures on RCFT. Preprint RU-89-32, YCTP-P13-89 (1989)Google Scholar
  5. 5.
    Frenkel, I., Lepowsky, J., Meurman, A.: Proc. Natl. Acad. Sci. USA81, 3256 (1984)Google Scholar
  6. 6.
    Frenkel, I., Lepowsky, J., Meurman, A.: In: Vertex Operators in Mathematics and Physics. Proc. 1983 MSRI Conf., Lepowsky, J. et al., (eds.) Berlin, Heidelberg, New York: Springer 1985, p. 231Google Scholar
  7. 7.
    Frenkel, I., Lepowsky, J., Meurman: Vertex Operator Algebras and the Monster. New York: Academic Press, 1988Google Scholar
  8. 8.
    Griess, R.: Invent. Math.69, 1 (1982)CrossRefGoogle Scholar
  9. 9.
    Conway, J.H., Sloane, N.J.A.: Sphere Packings, Lattices, and Groups. Berlin, Heidelberg, New York: Springer 1988Google Scholar
  10. 10.
    Conway, J.H., Curtis, R.T., Norton, S.P., Parker, R.A., Wilson, R.A.: ATLAS of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups. Oxford: Clarendon Press, 1985Google Scholar
  11. 11.
    Dolan, L., Goddard, P., Montague, P.: Nucl. Phys.B338, 529 (1990)CrossRefGoogle Scholar
  12. 12.
    Goddard, P.: Meromorphic Conformal Field Theory. In: Infinite dimensional Lie algebras and Lie groups Proceedings of the CIRM-Luminy Conference, 1988. Singapore; World Scientific, 1989, p. 556Google Scholar
  13. 13.
    Borcherds, R.E.: Proc. Natl. Acad. Sci. USA83, 3068 (1986)Google Scholar
  14. 14.
    Frenkel, I.B., Huang, Y.-Z., Lepowsky, J.: On axiomatic approaches to vertex operator algebras and modules. Preprint (1989)Google Scholar
  15. 15.
    Goddard, P., Kent, A., Olive, D.: Phys. Lett.152B, 88 (1985); Commun. Math. Phys.103, 105 (1986)Google Scholar
  16. 16.
    Conway, J.H., Pless, V.: Combinatorial Theory Series A28, 26 (1980)CrossRefGoogle Scholar
  17. 17.
    Venkov, B.B.: Trudy Matematicheskogo Instituta imeni V.A. Steklova148, 65 (1978); Proceedings of the Steklov Institute of Mathematics4, 63 (1980)Google Scholar
  18. 18.
    Thompson, J.G.: Bull. London Math. Soc.11, 352 (1979)Google Scholar
  19. 19.
    Bruce, D., Corrigan, E., Olive, D.: Nucl. Phys.B95, 427 (1975)CrossRefGoogle Scholar
  20. 20.
    Hollowood, T.J.: Twisted Strings, Vertex Operators and Algebras. Durham University Ph.D. Thesis, 1988Google Scholar
  21. 21.
    Tits, J.: Résumé de Cours, Annuaire du Collège de France 1982–198389; Invent. Math.78, 49 (1984)Google Scholar
  22. 22.
    Goddard, P., Nahm, W., Olive, D., Schwimmer, A.: Commun. Math. Phys.107, 179 (1986)CrossRefGoogle Scholar
  23. 23.
    Montague, P.: Codes, Lattices and Conformal Field Theories. Cambridge University Ph.D. Thesis, 1992Google Scholar
  24. 24.
    Montague, P.: On Representations of Conformal Field Theories and the Construction of Orbifolds. To appear, 1994Google Scholar
  25. 25.
    Dong, C.: Twisted Modules for Vertex Algebras Associated with Even lattices. Santa Cruz preprint, 1992Google Scholar
  26. 26.
    Dong, C.: Representations of the Moonshine Module Vertex Operator Algebra. Santa Cruz preprint, 1992Google Scholar
  27. 27.
    Montague, P.: Continuous Symmetries of Lattice Conformal Field Theories and theirZ 2-Orbifolds. To appear, 1994Google Scholar
  28. 28.
    Goddard, P.: Meromorphic Conformal Field Theory. Infinite dimensional Lie algebras and Lie groups: Proceedings of the CIRM-Luminy Conference, Singapore: World Scientific, 1989, p. 556Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • L. Dolan
    • 1
  • P. Goddard
    • 2
  • P. Montague
    • 2
  1. 1.Department of Physics and AstronomyUniversity of North CarolinaChapel HillU.S.A.
  2. 2.Department of Applied Mathematics and Theoretical PhysicsUniversity of CambridgeCambridgeU.K.

Personalised recommendations