Journal of Molecular Evolution

, Volume 29, Issue 4, pp 344–354 | Cite as

Amphibian albumins as members of the albumin, alpha-fetoprotein, vitamin D-binding protein multigene family

  • Denise Nardelli Haefliger
  • John E. Moskaitis
  • Daniel R. Schoenberg
  • Walter Wahli


TheXenopus laevis 68-kd and 74-kd albumin amino acid sequences are examined with respect to their relationship to the other known members of the albumin/α-fetoprotein/vitamin D-binding protein gene family. Each of the three members of this family presents a unique pattern of conserved regions indicating a differential selective pressure related to specific functional characteristics. Furthermore, an evolutionary tree of these genes was deduced from the divergence times calculated from direct nucleotide sequence comparisons of individual gene pairs. These calculations indicate that the vitamin D-binding protein/albumin separation occurred 560–600 million years (Myr) ago and the albumin/α-fetoprotein divergence 280 Myr ago. This observation leads to the hypothesis according to which the albumin/α-fetoprotein gene duplication occurred shortly after the amphibian/reptile separation. Consequently, and unlike mammals, amphibians and fishes should lack anα-fetoprotein in their serum at larval stages, which is consistent with a recent analysis of serum proteins inXenopus laevis larvae. This hypothesis now will have to be tested further in additional lower vertebrates.

Key words

Xenopus laevis Gene families Evolutionary tree Albumin/α-fetoprotein/vitamin D-binding protein Percent corrected divergence Molecular clocks Sequence homology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander Eiferman F, Young PR, Scott RW, Tilghman SM (1981) Intragenic amplification and divergence in the mouseα-fetoprotein gene. Nature 294:713–718PubMedGoogle Scholar
  2. Alexander F, Young PR, Tilghman SM (1984) Evolution of the albumin:α-fetoprotein ancestral gene from the amplification of a 27 nucleotide sequence. J Mol Biol 173:159–176PubMedGoogle Scholar
  3. Bisbee CA, Baker MA, Wilson AC, Hadzi-Azimi J, Fischberg M (1977) Albumin phylogeny for clawed frogs (Xenopus). Science 195:785–787PubMedGoogle Scholar
  4. Brown JR (1975) Structure of bovine serum albumin. Fed Proc 34:591Google Scholar
  5. Brown JR (1976) Structural origins of mammalian albumin. Fed Proc 35:2141–2144PubMedGoogle Scholar
  6. Carroll RL (1969) Origin of reptiles. In: Gans C, Bellairs Ad'A, Parsons TS (eds) Biology of the Reptilia, vol 1. Academic Press, London and New York, pp 1–44Google Scholar
  7. Cooke NE (1986) Rat vitamin D binding protein: determination of the full-length primary structure from cloned cDNA. J Biol Chem 261:3441–3450PubMedGoogle Scholar
  8. Dayhoff MO, Schwartz RM, Orcutt BC (1978) Atlas of protein sequence and structure, vol 5, suppl 3. National Biomedical Research Foundation, Washington DC, pp 345–352Google Scholar
  9. Doolittle RF (1986) Of URFs and ORFs. University Science Books, Mill Valley CAGoogle Scholar
  10. Dugaiczyk A, Law SW, Dennison OE (1982) Nucleotide sequence and the encoded amino acids of human serum albumin mRNA. Proc Natl Acad Sci USA 79:71–75PubMedGoogle Scholar
  11. Efstratiadis A, Posakony JW, Maniatis T, Lawn RM, O'Connell C, Spritz RA, DeRiel JK, Forget BG, Weissman SM, Slightom JL, Blechl AE, Smithies O, Baralle FE, Shoulders CC, Proudfoot NJ (1980) The structure and evolution of the human β-globin gene family. Cell 21:653–668.PubMedGoogle Scholar
  12. Germond JE, Walker P, ten Heggeler B, Brown-Luedi M, de Bony E, Wahli W (1984) Evolution of vitellogenin genes: comparative analysis of the nucleotide sequences downstream of the transcription initiation site of fourXenopus laevis and one chicken gene. Nucleic Acids Res 12:8595–8609PubMedGoogle Scholar
  13. Gibbs PEM, Dugaiczyk A (1987) Origin of structural domains of the serum-albumin gene family and a predicted structure of the gene for vitamin D-binding protein. Mol Biol Evol 4: 364–379PubMedGoogle Scholar
  14. Goad WB, Kanehisa MI (1982) Pattern recognition in nucleic acid sequences. I. A general method for finding local homologies and symmetries. Nucleic Acids Res 10:247–263PubMedGoogle Scholar
  15. Goodman M, Moore GW, Matsuda G (1975) Darwinian evolution in the genealogy of haemoglobin. Nature 253:603–608PubMedGoogle Scholar
  16. Gorin MB, Cooper DL, Eiferman F, Van der Rijn P, Tilghman SM (1981) The evolution ofα-fetoprotein and albumin. J Biol Chem 256:1954–1959PubMedGoogle Scholar
  17. Graf J-D, Fischberg M (1986) Albumin evolution in polyploid species of the genusXenopus. Biochem Genet 24:821–837PubMedGoogle Scholar
  18. Harper ME, Dugaiczyk A (1983) Linkage of the evolutionarily-related serum albumin andα-fetoprotein genes within q11-22 of human chromosome 4. J Hum Genet 35:565–572Google Scholar
  19. Hood L, Campbell MH, Elgin SCR (1975) The organization, expression, and evolution of antibody genes and other multigene families. Annu Rev Genet 9:305–353PubMedGoogle Scholar
  20. Hosbach HA, Wyler T, Weber R (1983) TheXenopus laevis globin gene family: chromosomal arrangement and gene structure. Cell 32:45–53PubMedGoogle Scholar
  21. Ingram RA, Scott RW, Tilghman SM (1981)α-fetoprotein and albumin genes are in tandem in the mouse genome. Proc Natl Acad Sci USA 78:4694–4698PubMedGoogle Scholar
  22. Innis MA, Miller DL (1980)α-fetoprotein gene expression. J Biol Chem 255:8994–8996PubMedGoogle Scholar
  23. Jagodzinski LL, Sargent TD, Yang M, Glackin C, Bonner J (1981) Sequence homology between RNAs encoding ratα-fetoprotein and rat serum albumin. Biochemistry 78:3521–3525Google Scholar
  24. Kanehisa MI (1982) Los Alamos sequence analysis package for nucleic acids and protein. Nucleic Acids Res 10:183–196PubMedGoogle Scholar
  25. Kioussis D, Eiferman F, Van de Rijn P, Gorin MB, Ingram RS, Tilghman SM (1981) The evolution ofα-foetoprotein and albumin. J Biol Chem 256:1960–1967PubMedGoogle Scholar
  26. Knöchel W, Korge E, Basner A, Meyerhof W (1986) Globin evolution in the genusXenopus: comparative analysis of cDNAs coding for adult globin polypeptides ofXenopus borealis andXenopus tropicalis. J Mol Evol 23:211–223PubMedGoogle Scholar
  27. Lauer J, Ahen C-KJ, Maniatis T (1980) The chromosomal arangement of humanα-like globin genes: sequence homology andα-globin gene deletions. Cell 20:119–130PubMedGoogle Scholar
  28. Law SW, Dugaiczyk A (1981) Homology between the primary structure ofα-fetoprotein, deduced from a complete cDNA sequence, and serum albumin. Nature 291:201–205PubMedGoogle Scholar
  29. Lawn RM, Adelman J, Bock SC, Franke AE, Houck CM, Najarian RC, Seeburg PH, Wion KL (1981) The sequence of human serum albumin cDNA and its expression inE. coli. Nucleic Acids Res 9:6103–6114PubMedGoogle Scholar
  30. Lindgren J, Vaheri A, Ruoslahti E (1974) Identification and isolation of a foetoprotein in the chicken. Differentiation 2: 233–236PubMedGoogle Scholar
  31. May FEB, Westley BR, Wyler T, Weber R (1983) Structure and evolution of theXenopus laevis albumin gene. J Mol Biol 168: 229–249PubMedGoogle Scholar
  32. Morinaga T, Sakai M, Wegmann TG, Tamaoki T (1983) Primary structures of humanα-fetoprotein and its mRNA. Proc Natl Acad Sci USA 80:4604–4608PubMedGoogle Scholar
  33. Moskaitis JE, Sargent TD, Smith LH Jr, Pastori RL, and Schoenberg DR (1989)Xenopus laevis serum albumin: sequence of the complementary deoxyribonucleic acids encoding the 68-and 74-kilodalton peptides and the regulation of albumin gene expression by thyroid hormone during development. Mol Endocrinol 3:464–473PubMedGoogle Scholar
  34. Nardelli D, van het Ship FD, Gerber-Huber S, Samallo J, Haefliger JA, Gruber M, AB G, Wahli W (1987) Comparison of the organization and fine structure of a chicken and aXenopus laevis vitellogenin gene. J Biol Chem 262:15377–15385PubMedGoogle Scholar
  35. Needleman SB, Wunsch DD (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 48:443–453PubMedGoogle Scholar
  36. Perler F, Efstratiadis A, Lomedico P, Gilbert W, Kolodner R, Dogson J (1980) The evolution of genes: the chicken preproinsulin gene. Cell 20:555–566PubMedGoogle Scholar
  37. Peters T (1977) Serum albumin: recent progress in the understanding of its structure and biosynthesis. Clin Chem 23:5–12PubMedGoogle Scholar
  38. Romero-Herrera AE, Lehmann H, Joysey KA, Friday AE (1973) Molecular evolution of myoglobin and the fossil record: a phylogenetic synthesis Nature 246:389–395PubMedGoogle Scholar
  39. Sargent TD, Yang M, Bonner J (1981) Nucleotide sequence of cloned rat serum albumin messenger RNA. Proc Natl Acad Sci USA 78:243–246PubMedGoogle Scholar
  40. Schoenberg DR (1981) Albumin is encoded by 2 messenger RNAs inXenopus laevis. Nucleic Acids Res 9:6669–6688PubMedGoogle Scholar
  41. Schoentgen F, Metz-Boutigue M-H, Jollès J, Constans J, Jollès P (1986) Complete amino acid sequence of human vitamin D-binding protein (group-specific component): evidence of a three-fold internal homology as in serum albumin andα-fetoprotein. Biochim Biophys Acta 871:189–198PubMedGoogle Scholar
  42. Schorpp M, Döbbeling U, Wagner U, Ryffel GU (1988) 5′-flanking and 5′-proximal exon regions of the twoXenopus albumin genes. J Mol Biol 199:83–93PubMedGoogle Scholar
  43. Smith GP (1976) Evolution of repeated DNA sequences by unequal crossover. Science 191:528–535PubMedGoogle Scholar
  44. Szpirer J, Levan G, Thorn M, Szpirer C (1984) Gene mapping in the rat by mouse-rat somatic cell hybridization: synteny of the albumin and alpha-fetoprotein. Cytogenet Cell Genet 38:142–149PubMedGoogle Scholar
  45. Tilghman SM (1985) The structure and regulation of theα-fetoprotein and albumin genes. In: MacLean N (ed) Oxford surveys on eukaryotic genes, vol 3. University Press, Oxford, pp 160–206Google Scholar
  46. Turcotte B, Guertin M, Chevrette M, Belanger L (1985) Ratα1-fetoprotein messenger RNA: 5′-end sequence and glucocorticoid-suppressed liver transcription in an improved nuclear run-off assay. Nucleic Acids Res 13:2387–2398PubMedGoogle Scholar
  47. Urano Y, Sakai M, Watanabe K, Tamaoki T (1984) Tandem arrangement of the albumin andα-fetoprotein genes in the human genome. Gene 32:255–261PubMedGoogle Scholar
  48. Wahli W, Abraham I, Weber R (1978) Retention of the differentiated state by larvalXenopus liver cells in primary culture. Wilhelm Roux's Arch Dev Biol 185:235–248Google Scholar
  49. Wahli W, Dawid IB, Wyler T, Jaggi RB, Weber R, Ryffel GU (1979) Vitellogenin inXenopus laevis is encoded in a small family of genes Cell 16:535–549PubMedGoogle Scholar
  50. Westley B, Weber R (1982) Divergence of the two albumins ofX. laevis: evidence for the glycosylation of the major 74K albumin. Differentiation 22:227–230PubMedGoogle Scholar
  51. Westley B, Wyler T, Ryffel G, Weber R (1981)Xenopus laevis serum albumins are encoded in two closely related genes. Nucleic Acids Res 9:3557–3574PubMedGoogle Scholar
  52. Wilbur WJ, Lipman DJ (1983) Rapid similarity searches of nucleic acid and protein data banks. Proc Natl Acad Sci USA 80:726–730PubMedGoogle Scholar
  53. Wilson AC, Carlson SS, White TJ (1977) Biochemical evolution. Annu Rev Biochem 46:573–639PubMedGoogle Scholar
  54. Yang F, Luna VJ, McAnelly RD, Naberhaus KH, Cupplies RL, Bowman BH (1985) Evolutionary and structural relationships among the group-specific component, albumin andα-fetoprotein. Nucleic Acids Res 13:8007–8017PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1989

Authors and Affiliations

  • Denise Nardelli Haefliger
    • 1
  • John E. Moskaitis
    • 2
  • Daniel R. Schoenberg
    • 2
  • Walter Wahli
    • 1
  1. 1.Institut de Biologie animaleUniversité de Lausanne, Bâtiment de BiologieLausanneSwitzerland
  2. 2.Department of PharmacologyUniformed Services University of the Health SciencesBethesdaUSA

Personalised recommendations