Skip to main content

The evolution fo rhodopsins and neurotransmitter receptors

Summary

Rhodopsins share a limited number of amino acid identities with a variety of other integral membrane proteins. Most of these proteins have seven putative transmembrane segments and are likely to play a role in transmembrane signaling. We have undertaken a systematic series of comparisons of primary and secondary structure in order to clarify the functional and evolutionary significance of these sequence similarities. On the basis of consistently high similarity scores, we find that the most internally consistent definition of the rhodopsis gene family would ionclude vertebrate rhodospins, α- and β-adrenergic receptors, M1 and M2 muscarinic acetylcholine receptors, substance K receptors and insect rhodopsins, while excluding bacterirhodopsin, themas human oncogene, vertebrate and insect nicotinic acetylcholine receptors, and the yeast STE2 and STE3 peptide receptors. The rhodopsin gene family is highly diverged at the primary sequence level but has maintained a conserved secondary structure, including a previosuly unidentified hierarchy of transmembrane segment hydrophobicity. We have deevelope new computer alogithms for progressive multiple sequence alignment and the analysis of local conservation of protein domains, and we have used these algorithms to examined the phylogeny of the rhodopsin gene family and the changing domains of sequence conservation. The results show striking diffiierences and similarities in the conserved domains in each of the three main branches of the rhodopsin gene family, and indicte that color vision arose independently in the lines of descent leading to modern humans and fruit flies.

This is a preview of subscription content, access via your institution.

References

  • Albert PR, Zhou QY, Van Tol H, Bunzow JR, Civelli O (1990) Cloning, functional expression, and mRNA tissue distribution of the rat 5-hydroxytryptaminel A receptor gene. J Biol Chem 265:5825–5832

    PubMed  Google Scholar 

  • Arakawa S, Gocayne JD, McCombie WR, Urquhart DA, Hall LM, Fraser CM, Venter JC (1990) Cloning, localization, and permanent expressio of aDrosophila octopamine receptor. Neuron 4:343–354

    PubMed  Google Scholar 

  • Applebury ML, Hargrave PA (1986) Molecular biology of the visual pigments. Vision Res 26:1881–1895

    PubMed  Google Scholar 

  • Bunzow JR, Van Tol H Grandy GK, Albert P, Salon J, Christie M, Machida CA, Neve KA, Civelli O (1988) Cloning and expression of a rat D2 dopamine receptor cDNA. Nature 336: 783–787

    PubMed  Google Scholar 

  • Cowman AF, Zuker CS, Rubin GM (1986) An opsin gene expressed in only one photoreceptor cell type of theDrosophila eye. Cell 44:705–710

    PubMed  Google Scholar 

  • Dayhoff MO, Schwartz RM, Orcutt BC (1978) A model of evolutionary change in proteins. In: Dayhoff MO (ed) Atlas of protein sequence and structure, vol 5, supplement 3. National Biomedical Research Foundation, Washington DC., pp 345–352

    Google Scholar 

  • Dixon RAF, Kobilka BK, Strader DJ, Benovic JL, Dahlman HG, Frielle T, Bolanowski MA, Bennett CD, Rands E, Diehl RE, Mumford RA, Slater EE, Sigal IS Caron MG, Lefkowitz RJ, Strader CD (1986) Cloning of the gene and cDNA for mammalian β-adrenergic receptor and homology with rhodopsin. Nature 321:75–79

    PubMed  Google Scholar 

  • Doolittle RF (1990) Searching through sequence databases. Methods Enzymol 183:99–110

    PubMed  Google Scholar 

  • Dunn R, McCoy J, Simsek M, Majumdar A, Chang SH, Raj-Bhandary UL, Khorana HG (1981) The bacteriorhodopsin gene. Proc Natl Acad Sci USA 78:6744–6748

    PubMed  Google Scholar 

  • Eisenberg D, Schwarz E, Komaromy M, Wall R (1984) Analysis of membrahe and surface protein sequences with the hydrophobic moment plot. J Mol Biol 179:125–142

    PubMed  Google Scholar 

  • Farris JS (1972) Estimating phylogenetic trees from distance matrices. Am Nat 106:645–668

    Google Scholar 

  • Feng DF, Doolittle RF (1987) Progressive sequence alignment as a prerequisite to correct phylogenetic trees. J Mol Evol 25: 351–360

    PubMed  Google Scholar 

  • Feng DF, Doolittle RF (1990) Progressive alignment and phylogenetic tree construction of protein sequences. Methods Enzymol 183:375–387

    PubMed  Google Scholar 

  • Feng DF, Johnson MS, Doolittle RF (1985) Alignin amino acid sequences: comparison of commontly used methods. J Mol Evol 21:112–125

    Google Scholar 

  • Findlay JBC, Barclay PL, Brett M, Davis M, Pappin DJC, Thompson P (1984) The structure of mammalian rod opsins. Vision Res 24:1501–1508

    PubMed  Google Scholar 

  • Fryxell KJ (1987) Expression and evolution ry of eye-specific genes. Caltech Biol Ann Rep 1986–1987, p 71

  • Fryxell KJ, Meyerowitz EM (1987) An opsin gene that is expressed only in the R7 photoreceptor cell ofDrosophila EMBO J 6:443–451

    PubMed  Google Scholar 

  • Gocayne J, Robinson DA, Fitzgerald MG, Chung FZ, Kerlavage AR, Lentes KU, Lai J, Wang CD, Fraser CM, Venter JC (1987) Primary structure of rat cardiac β-adrenergic and muscarinic cholinergic receptors obtained by automated DNA sequence analysis: further evidence for a multigene family. Proc Natl Acad Sci USA 84:8296–8300

    PubMed  Google Scholar 

  • Gotoh O (1982) An improved alogirthms for matching biological sequences. J Mol Biol 162:705–708

    Google Scholar 

  • Hardie RC (1986) The photoreceptor array of the dipteran retna. Trends Neurosci 9:419–423

    Google Scholar 

  • Hargrave PA, McDowell JH, Feldman RJ, Atkinson PH, Rao JKM, Argos P (1984) Rhodopsin's protein and carbohydrate structure: selected aspects. Virion Res 24:1487–1499

    Google Scholar 

  • Harris WA, Stark WS, Walker JA (1976) Genetic dissection of the photoreceptor system in the compound eye ofDrosophila melanogaster. J Physiol 256:415–439

    Google Scholar 

  • hayashida H, Kuma KI, Miyata T (1986) Similarity of mas and rhodopsin gene products. Nature 323:116

    PubMed  Google Scholar 

  • Hermans-Borgmeyer I, Zopf D, Ryseck RP, Hovermann B, Betz H, Gundelfinger ED (1986) Primar structure of a developmentally regulated nicotinic acetylcholine receptor protein fromDrosophial. EMBO J 5:1503–1508

    Google Scholar 

  • Hyde DR, Mecklenburg KL, Pollock JA, Vihtelic TS, Benzer S (1990) TwentyDrosophila visual system cDNA clones: one is a homolog of human arrestin Proc Natl Acad Sci USA 87: 1008–1012

    PubMed  Google Scholar 

  • Jackson TR, Blair LA, Marshall J, Goedert M, Hanley MR (1988) The mas oncogene encodese an angiotensin receptor. Nature 335:437–440

    PubMed  Google Scholar 

  • Kobilka BK, Dixon RAF, Frielle T, Dohlman HG, Bolanowski MA, Sigal IS, Yang-Feng TL, Francke U, Caron MG, Lefkowitz RJ (1987a) cDNA for the humanβ 2-adrenergic receptor: a protein with multiple membrane-spanning domains and encoded by a gene whose chromosomal location is shared with the of the receptor for platelet-derived growth factor. Proc Natl Acad Sci USA 84:46–50

    PubMed  Google Scholar 

  • Kobilka BK, Matsui H, Kobika TS, Yang-Feng TL, Francke U, Caron MG, Lefkowitz RJ, Regan JW (1987b) Cloning, sequencing, and expression of the gene coding of the human plateletα 2-adrenergic receptor. Science 238:650–656

    PubMed  Google Scholar 

  • Kobilka BK, Frielle T, Collins S, Yang-Feng T, Kobilka TS, Francke U, Lefkowitz RJ, Caron MG (1987c) An intronless gene encoding a potential member of the family of receptors coupled to guanine nucleotide regulatory proteins. Nature 329: 75–79

    PubMed  Google Scholar 

  • Kubo T, Fukuda K, Mikami A, Maeda A, Taklahashi H, Mishina M, Haga T, Haga K, Ichiyama A, Kangawa K, Kojiama M, Matsuo H, Hirose T, Numa S (1986) Cloning, sequencing and expressin of complementary DNA encoding the muscarinic acetylcholine receptor Nature 323:411–416

    PubMed  Google Scholar 

  • Li WH (1981) Simple method for constructing phylogenetic trees from distance matrices. Proc Natl Acad Sci USA78: 1085–1089

    PubMed  Google Scholar 

  • Lipman DJ, Person WR (1985) Rapid and sensitive protein similarity searches. Science 227:1435–1441

    PubMed  Google Scholar 

  • Lomasney JW Lorenz W, Alien LF, King K, Reagan JW, Yang FT, Caron MG, Lefkowitz RJ (1990) Expansions of theα 2-adrenergic receptor family: cloning and characterization of a humanα 2-adrenergic receptor subtype, the gnee for which is located chromosome 2. Proc Natl Acad Sci USA 87:5094–5098

    PubMed  Google Scholar 

  • Machida CA, Bunzow JR, Searles RP, Van Tol H, Tester B, Neve KA, Teal P, Nipper V, Civelli O (1990) Molecular cloning and expressio of the ratβ 1-adrenergic receptor gene. J Biol Chem 265:12960–12965

    PubMed  Google Scholar 

  • Mrchalonis JJ, Schluter SF (1989) Immunoproteins in evolution. Dev Comp Immunol 13:285–301

    PubMed  Google Scholar 

  • Marsh L, Herskowitz I (1988) STE2 proten ofSaccharomoyces kluyveri is a member of the rhodopsin/β-adrenergic receptor family and is responsible for recognition of the peptide ligand α factor. Proc Natl Acad Sci USA 85:3855–3859

    PubMed  Google Scholar 

  • Masu Y, Nakayama K, Tamaki H, Harada Y, Kuno M, Nakanishi S (1987) cDNA cloning of boyine substance-K receptor through oocyte expression system. Nature 329:836–838

    PubMed  Google Scholar 

  • Montell C, Jones K, Zuker C, Rubin G (1987) A second opsin gene expression in the ultraviolet sensitive R7 photoreceptor gene expression in the ultraviolet sensitivity R7 photorecpetor cells ofDrosophila melanogaster. J Neurosci 7:1558–1566

    PubMed  Google Scholar 

  • Makayama N, Miyajima A, Arai K (1985) Nucleotide sequences of STE2 and STE3, cell type-scepific sterile genes fromSacchromyces cerevisiae. EMBO J 4:2643–2648

    Google Scholar 

  • Nathans J (1987) Molecular biology of visual pigments. Annu Rev Neurosci 10:163–194

    PubMed  Google Scholar 

  • Nathans J, Hogness DS (1983) Isolation, sequence analysis, and intron-exon arrangement of the gene encoding bovine rhodopsin. Cell 34:807–814

    PubMed  Google Scholar 

  • Nathans J, Hogness DS (1984) Isolation and nucleotide sequence of the gene encoding human rhodopsin. Proc Natl Acad Sci USA 81:4851–4855

    PubMed  Google Scholar 

  • Nathans J, Thomas D, Hiogness DS (1986a) Molecular genetics of human color vision: the genes encoding blue, green, and red pigments. Science 232:193–202

    PubMed  Google Scholar 

  • Nathans J, Piantanida TP, Eddy RL, Shows TB, Hogness DS (1986b) Molecular genetics of ionherited variation in human color vision. Science 232:203–210

    PubMed  Google Scholar 

  • Nathanson NM (1987 Molecular properties of the muscarinic acetylcholine receptor. Annu Rev Neurosci 10:195–236

    PubMed  Google Scholar 

  • Needlman SB, Wunsch CD (1970) A generalmethod applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 48:443–453

    PubMed  Google Scholar 

  • O'Dowd BF, Lefkowitz RJ, Caron MG (1989) Structure of the adrenergic and related receptors. Annu Rev Neurosci 12:67–83

    PubMed  Google Scholar 

  • O'tousa JE, Baehr W, Martin RL, Hirsh J, Pak WL, Applebury ML (1985) TheDrosophila ninaE gene encodes an opsin. Cell 40:839–850

    PubMed  Google Scholar 

  • Pearson WR (1990) Rapid and sensitive sequence comparison with FASTP and FASTA. Methods Enzymol 183:63–98

    PubMed  Google Scholar 

  • Peralta EG, Winslow JW, Peterson GL, Smith DH, Ashkenazi A, Ramachandran J, Schimerlik MI, Capon DJ (1987) Primary structure and biochemical properties of an M2 muscarinic receptor. Science 236:600–605

    PubMed  Google Scholar 

  • Quinn WG, Harris WA, Benzer S (1974) Conditioned behavior inDrosophila melanogaster. Proc Natl Acad Sci USA 71:708–712

    PubMed  Google Scholar 

  • Regan JW, Kobilka TS, Yang FT, Caron MG, Lefkowitz RJ, Kobilka BK (1988) Cloning and expression of a human kidney cDNA forα 2-adrenergic receptor subtype. Nature 335:437–440

    PubMed  Google Scholar 

  • Saxe CL, Klein P, Sun TJ, Kimmel AR, Devreotes PN (1988) Structure and expression of the cAMP cell-surface recpetor. Dev Genet 9:227–235

    PubMed  Google Scholar 

  • Schwinn DA, Lomasney JW, Lorenz W, Szklut PJ, Fremoeau RJ, Yang FT, Cron MG, Lefkowitz RJ, Coteccshia S (1990) Molecular cloning and expression of the cDNA for a novelα 1-adrenergic receptor subtype. J Biol Chem 265:8183–8189

    PubMed  Google Scholar 

  • Wolinsky EJ, Landis SC, Patterson PH (1985) Expressdion of noradrenergic and cholinergic traits by smmopathetic neurons cultured without serum. J Neurosci 5:1497–1508

    PubMed  Google Scholar 

  • Yarden Y, Rodriguez Hu, Wong SKF, Brandt DR, May DC, Burnier J, Harkins RN, Chen EY, Ramachandran J, Ullrich A, Ross EM (1986) The avian β-adrenergic receptor: primary structure and membrane topology. Proc Natl Acad Sci USA 83:6795–6799

    PubMed  Google Scholar 

  • Yokoyama S, Yokoyama R (1989) Molecular evolution of human visual pigment genes. Mol Biol Evol 6:186–197

    PubMed  Google Scholar 

  • Yokoyama R, Yokoyama S (1990) Convergent evolution of the red- and green-like visual pigment genes in fish,Astyanax fasciatus, and human. Proc. Natl Acad Sci USA 87:9315–9318

    PubMed  Google Scholar 

  • Young D, Waitches G, Birchmeier C, Fasano O, Wigler M (1986) Isolation and characterization of a new cellular oncogene encoding a protein with multiple potential transmembrane domains. Cell 45:711–719

    PubMed  Google Scholar 

  • Zuker CS, Cowman AF, Rubin GM (1985) Isolation and structure of a rhodopsin gene fromD. melanogaster. Cell 40:851–858

    PubMed  Google Scholar 

  • Zuker CS, Montell C, Jones, K, Laverty T, Rubin GM (1987) A rhodopsin gene expressed in photoreceptor cell R7 of theDrosophila eye: homologies with other signal transducing molecules. J Neurosci 7:1550–1557

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fryxel, K.J., Meyerowitz, E.M. The evolution fo rhodopsins and neurotransmitter receptors. J Mol Evol 33, 367–378 (1991). https://doi.org/10.1007/BF02102867

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02102867

Key words

  • Neurotransmitter receptors
  • Rhodopsin
  • Multiple sequence alignment