Skip to main content
Log in

Boundary conditions for quantum mechanics on cones and fields around cosmic strings

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the options for boundary conditions at the conical singularity for quantum mechanics on a two-dimensional cone with deficit angle ≦ 2π and for classical and quantum scalar fields propagating with a translationally invariant dynamics in the 1+3 dimensional spacetime around an idealized straight infinitely long, infinitesimally thin cosmic string. The key to our analysis is the observation that minus-the-Laplacian on a cone possesses a one-parameter family of selfadjoint extensions. These may be labeled by a parameterR with the dimensions of length—taking values in [0, ∞). ForR=0, the extension is positive. WhenR≠0 there is a bound state. Each of our problems has a range of possible dynamical evolutions corresponding to a range of allowedR-values. They correspond to either finite, forR=0, or logarithmically divergent, forR≠0, boundary conditions at zero radius. Non-zeroR-values are a satisfactory replacement for the (mathematically ill-defined) notion of δ-function potentials at the cone's apex.

We discuss the relevance of the various idealized dynamics to quantum mechanics on a cone with a rounded-off centre and field theory around a “true” string of finite thickness. Provided one is interested in effects at sufficiently large length scales, the “true” dynamics will depend on the details of the interaction of the wave function with the cone's centre (/field with the string etc.) only through a single parameterR (its “scattering length”) and will be well-approximated by the dynamics for the corresponding idealized problem with the sameR-value. This turns out to be zero if the interaction with the centre is purely gravitational and minimally coupled, but non-zero values can be important to model nongravitational (or non-minimally coupled) interactions. Especially, we point out the relevance of non-zeroR-values to electromagnetic waves around superconducting strings. We also briefly speculate on the relevance of theR-parameter in the application of quantum mechanics on cones to 1+2 dimensional quantum gravity with massive scalars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vilenkin, A.: In: 300 Years of Gravity. Hawking, S.W., Israel, W. (eds.). Cambridge: Cambridge University Press 1987

    Google Scholar 

  2. Aryal, M., Ford, L.H., Vilenkin, A.: Phys. Rev. D34, 2263 (1986)

    Google Scholar 

  3. Linet, B.: J. Gen. Rel. Grav.17, 1109 (1985)

    Article  Google Scholar 

  4. Smith, A.G.: Gravitational effects of an infinite straight cosmic string on classical and quantum fields: self-forces and vacuum fluctuations. Tufts University Preprint, June 1986

  5. Helliwell, T.M., Konkowski, D.A.: Phys. Rev. D34, 1918 (1986)

    Article  Google Scholar 

  6. Linet, B.: Phys. Rev. D35, 536 (1987)

    Google Scholar 

  7. Frolov, V.P., Serebrinary, E.M.: Phys. Rev. D35, 3779 (1987)

    Article  Google Scholar 

  8. Dowker, J.S.: Phys. Rev. D36, 3095 (1987)

    Article  Google Scholar 

  9. Dowker, J.S.: Class. Quantum Grav.4, L157 (1987)

    Article  Google Scholar 

  10. Davies, P.C.W., Sahni, V.: Class. Quantum Grav.5, 1 (1988)

    Google Scholar 

  11. De Witt, B.S.: Phys. Rep.19, 295 (1975)

    Article  Google Scholar 

  12. Kay, B.S.: Phys. Rev. D20, 3052 (1979)

    Article  Google Scholar 

  13. 't Hooft, G.: Commun. Math. Phys.117, 685 (1988)

    Article  Google Scholar 

  14. Deser, S., Jackiw, R.: Commun. Math. Phys.118, 495 (1988)

    Article  Google Scholar 

  15. de Barros Cobra Damgaard, B., Roemer, H.: Lett. Math. Phys.13, 189 (1987)

    Article  Google Scholar 

  16. Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. San Francisco: Freeman 1973

    Google Scholar 

  17. Reed, M., Simon, B.: Methods of modern mathematical physics. Vol. I. Functional analysis. New York, London: Academic Press 1972

    Google Scholar 

  18. Reed, M., Simon, B.: Methods of modern mathematical physics. Vol. II. Fourier analysis, self-adjointness. New York, London: Academic Press 1975

    Google Scholar 

  19. Stakgold, I.: Green's functions and boundary value problems. New York: Wiley 1979

    Google Scholar 

  20. Wald, R.M.: J. Math. Phys.20, 1056 (1979); Erratum, J. Math. Phys.21, 218 (1980)

    Google Scholar 

  21. Kay, B.S., Wald, R.M.: Class. Quantum Grav.4, 893 (1987)

    Article  Google Scholar 

  22. Kay, B.S., Wald, R.M.: Theorems on the uniqueness and thermal properties of stationary, nonsingular, quasi-free states on spacetime with a bifurcate Killing horizon. Phys. Rep., in press, 1991

  23. Segal, I.E.: Mathematical problems of relativistic physics. Providence: American Mathematical Society 1963

    Google Scholar 

  24. Kay, B.S.: Commun. Math. Phys.62, 55 (1978)

    Article  Google Scholar 

  25. Studer, U.M.: Quantum mechanics and quantum field theory on spacetimes with conical singularities. Diploma Thesis, ETH Zürich 1988

  26. Chernoff, P.R.: J. Funct. Anal.12, 401 (1973)

    Article  Google Scholar 

  27. Coddington, E.A., Levinson, N.: Theory of ordinary differential equations. New York: McGraw-Hill 1955

    Google Scholar 

  28. Albeverio, S., Gesztesy, F., Hoegh-Krohn, R., Holden, H.: Solvable models in quantum mechanics. Berlin, Heidelberg, New York: Springer 1988

    Google Scholar 

  29. Linet, B.: Phys. Rev. D33, 1833 (1986)

    Article  Google Scholar 

  30. Kay, B.S.: Springer Lect. Notes in Math., Vol. 905, p. 272. Berlin, Heidelberg, New York: Springer 1982

    Google Scholar 

  31. Dowker, J.S.: J. Phys. A10, 115 (1977)

    Google Scholar 

  32. Gradshteyn, I.S., Ryzhik, I.M.: Table of integrals, series, and products. New York, London: Academic Press 1980

    Google Scholar 

  33. de Sousa Gerbert, P., Jackiw, R.: Commun. Math. Phys.124, 229 (1989)

    Article  Google Scholar 

  34. Dimock, J., Kay, B.S.: Ann. Phys. (NY)175, 366 (1987)

    Article  Google Scholar 

  35. Gott, J.R.: Ap. J.288, 422 (1985)

    Article  Google Scholar 

  36. Hiscock, W.A.: Phys. Rev. D31, 3288 (1985)

    Article  Google Scholar 

  37. Frolov, V.P., Israel, W., Unruh, W.G.: Phys. Rev. D39, 1084 (1989)

    Article  Google Scholar 

  38. Hiscock, W.A.: Phys. Lett. B188, 317 (1987)

    Article  Google Scholar 

  39. Reed, M., Simon, B.: Methods of modern mathematical physics, Vol. III. Scattering Theory. New York, London: Academic Press 1979

    Google Scholar 

  40. Newton, R.G.: Scattering theory of waves and particles. New York: McGraw-Hill 1966

    Google Scholar 

  41. Gibbons, G.W., Ruiz Ruiz, F., Vachaspati, T.: Commun. Math. Phys.127, 295–312 (1990)

    Article  Google Scholar 

  42. Kay, B.S.: When can a small object have a big effect at large scales?, in preparation

  43. Kay, B.S.: Theorems on sequences of Schrödinger potentials with supports which decrease to zero, in preparation

  44. Alford, M.G., March-Russell, J., Wilczek, F.: Nucl. Phys. B328, 140 (1989)

    Article  Google Scholar 

  45. Blatt, J.M., Weisskopf, V.F.: Theoretical nuclear physics. New York: Wiley (London: Chapman and Hall) 1952

    Google Scholar 

  46. Bollé, D., Gesztesy, F.: Phys. Rev. Lett.52, 1469 (1984)

    Article  Google Scholar 

  47. Bollé, D., Gesztesy, F.: Phys. Rev. A30, 1279 (1984)

    Article  Google Scholar 

  48. Gregory, R.: Phys. Rev. Lett.59, 740 (1987)

    Article  Google Scholar 

  49. Landsman, K.: Quantization and superselection sectors II: Dirac monopole and Aharonov-Bohm effect, Rev. Math. Phys.2, 73 (1990)

    Article  Google Scholar 

  50. Aharonov, Y., Bohm, D.: Phys. Rev.119, 485 (1959)

    Article  Google Scholar 

  51. Everett, A.E.: Phys. Rev. D24, 858 (1981)

    Article  Google Scholar 

  52. Witten, E.: Nucl. Phys. B249, 557 (1985)

    Article  Google Scholar 

  53. Kay, B.S.: On the electromagnetic self-force due to a superconducting cosmic string, in preparation

  54. Vilenkin, A.: Phys. Rev. D23, 852 (1981)

    Article  Google Scholar 

  55. Garfinkle, D.: Phys. Rev. D32, 1323 (1985)

    Article  Google Scholar 

  56. Everett, A.E.: Phys. Rev. D61, 1807 (1988)

    Google Scholar 

  57. Preskill, J.: Vortices and Monopoles. In: Architecture of the fundamental interactions at short distances. Ramond, R., Stora, R. (eds.). Amsterdam: North Holland 1987

    Google Scholar 

  58. Allen, B., Ottewill, A.: Effects of curvature couplings for quantum fields on cosmic string space-times. Phys. Rev. D42, 2669 (1990)

    Article  Google Scholar 

  59. Exner, P., Šeba, P. (eds.): Application of self-adjoint extensions in quantum physics. (Proceedings, Dubna.) Lect. Notes in Phys., Vol. 324. Berlin, Heidelberg, New York: Springer 1989

    Google Scholar 

  60. Emmrich, C., Römer, H.: Commun. Math. Phys.129, 69 (1990)

    Article  Google Scholar 

  61. de Sousa Gerbert, Ph.: Phys. Rev. D40, 1346 (1989)

    Article  Google Scholar 

  62. Perkins, W.B., Davis, A.-C.: Nucl. Phys. B349, 207 (1991)

    Article  Google Scholar 

  63. Gregory, R., Perkins, W.B., Davis, A.-C., Brandenberger, R.H.: Cosmic Strings and Baryon Decay Catalysis. In: The Structure and Evolution of Cosmic Strings. Gibbons, G.W., Hawking, S.W., Vachaspati, T. (eds.) Cambridge, Cambridge University Press 1990

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by B. Simon

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kay, B.S., Studer, U.M. Boundary conditions for quantum mechanics on cones and fields around cosmic strings. Commun.Math. Phys. 139, 103–139 (1991). https://doi.org/10.1007/BF02102731

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02102731

Keywords

Navigation