Communications in Mathematical Physics

, Volume 146, Issue 2, pp 397–402 | Cite as

Current algebra of classical non-linear sigma models

  • M. Forger
  • J. Laartz
  • U. Schäper
Article

Abstract

The current algebra of classical non-linear sigma models on arbitrary Riemannian manifolds is analyzed. It is found that introducing, in addition to the Noether currentjμ associated with the global symmetry of the theory, a composite scalar fieldj, the algebra closes under Poisson brackets.

Keywords

Neural Network Manifold Statistical Physic Complex System Nonlinear Dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Faddeev, L.D., Takhtajan, L.A.: Hamiltonian methods in the theory of solitons. Berlin, Heidelberg, New York: Springer 1987Google Scholar
  2. 2.
    Maillet, J.-M.: Hamiltonian structures for integrable classical theories from graded Kac-Moody algebras. Phys. Lett.167B, 401–405 (1986)Google Scholar
  3. 3.
    Maillet, J.-M.: Kac-Moody algebra and extended Yang-Baxter relations in theO(N) non-linear sigma model. Phys. Lett.162B, 137–142 (1985)Google Scholar
  4. 4.
    de Vega, H.J., Eichenherr, H., Maillet, J.-M.: Classical and quantum algebras of non-local charges in sigma models. Commun. Math. Phys.92, 507–524 (1984)CrossRefGoogle Scholar
  5. 5.
    Eichenherr, H., Forger, M.: On the dual symmetry of the nonlinear sigma models. Nucl. Phys.B155, 381–393 (1979)CrossRefGoogle Scholar
  6. 6.
    Eichenherr, H., Forger, M.: More about nonlinear sigma models on symmetric spaces. Nucl. Phys.B 164, 528–535 (1980);B 282, 745–746 (1987) (Erratum)CrossRefGoogle Scholar
  7. 7.
    Eichenherr, H., Forger, M.: Higher local conservation laws for nonlinear sigma models on symmetric spaces. Commun. Math. Phys.82, 227–255 (1981)Google Scholar
  8. 8.
    Forger, M.: Nonlinear sigma models on symmetric spaces. In: Nonlinear partial differential operators and quantization procedures. Proceedings, Clausthal, Germany 1981. Andersson, S.I., Doebner, H.D. (eds.). Lecture Notes in Mathematics, vol. 1037. Berlin, Heidelberg, New York: Springer 1983Google Scholar
  9. 9.
    Bordemann, M., Forger, M., Laartz, J., Schäper, U.: The Lie-Poisson structure of integrable classical non-linear sigma models. University of Freiburg preprint THEP 91/11Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • M. Forger
    • 1
  • J. Laartz
    • 1
  • U. Schäper
    • 1
  1. 1.Fakultät für Physik der Universität FreiburgFreiburgFederal Republic of Germany

Personalised recommendations