Skip to main content
Log in

Finite-volume statistical mechanics of two-component Coulomb-like systems and the principle of macroscopic equivalence

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Classical stable charge-symmetric two-component systems are discussed in a fixed domainΛ⊂ℝd. The limitN→∞ of the finite-N canonical Gibbs ensemble is compared with the results obtained from a discussion of the Gibbs measures on the space of infinite configurations (the states). A first-order phase transition in the Gibbs states is proved for a large class of interactions, including regularized Coulomb interactions ford≧3. In the latter case the transition is isomorphic to an implosion/explosion transition in regularized gravitational systems. Spherical symmetry is not assumed. A transition occurs for certain largedomain/low-temperature pairs (Λ,β ∓1), but ceases to exist in the infinite-volume ensemble. The phase transition supports the conjecture that the standard thermodynamic-limit sequence can be nonuniform even for standardH-stable Hamiltonians. The results about the limit of the finite-N ensemble are less complete due to lack of sufficient control of the correlations. However, some notable differences between both descriptions are shown, which are cuased by noncommuting limits. Possible physical consequences and open questions are pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • [Ama] Amann, H.: Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces. SIAM Rev.18, 620 (1976)

    Article  Google Scholar 

  • [Bal] Balescu, R.: Equilibrium and nonequilibrium statistical mechanics New York: Wiley 1975

    Google Scholar 

  • [Bav] Bavaud, F.: Equilibrium properties of the Vlasov functional: the generalized Poisson-Boltzmann-Emden equation. Rev. Mod. Phys.63, 129 (1991)

    Article  Google Scholar 

  • [Cam-O'N] Campbell L. J., O'Neil, K.: Statistics of 2-d point vortices and high energy vortex states. Los Alamos Preprint LA-UR 90-3960, to appear in J. Stat. Phys. (1991)

  • [Com] Compagner, A.: Thermodynamics as the continuum limit of statistical mechanics. Am. J. Phys.57, 106 (1989)

    Article  Google Scholar 

  • [C-B-R] Compagner, A., Bruin, C., Roelse, A.: Collapsing systems. Phys. Rev. A39, 5989 (1989)

    Article  Google Scholar 

  • [Ell] Ellis, R. S. Entropy, large deviations, and statistical mechanics. Berlin, Heidelberg, New York, Springer 1985

    Google Scholar 

  • [Fis] Fisher, M. E.: The free energy of a macroscopic system. Arch. Rat. Mech. Anal.17, 377 (1967)

    Google Scholar 

  • [Fis-Rue] Fisher, M. E., Ruelle, D.: The stability of many-particle systems. J. Math. Phys.7, 260 (1966)

    Article  Google Scholar 

  • [Frö-Par 1] Fröhlich, J., Park, Y. M.: Correlation inequalities and the thermodynamic limit for classical and quantum continuous systems. Commun. Math. Phys.59, 235 (1978)

    Article  Google Scholar 

  • [Frö-Par 2] Fröhlich, J., Park, Y. M.: Correlation inequalities and the thermodynamic limit for classical and quantum continuous systems. II. Bose-Einstein and Fermi-Dirac statistics. J. Stat. Phys.23, 701 (1980)

    Google Scholar 

  • [Frö-Rue] Fröhlich, J., Ruelle, D.: Statistical mechanics of vortices in an inviscid twodimensional fluid. Commun. Math. Phys.87, 1 (1982)

    Article  Google Scholar 

  • [Gib] Gibbs, J. W.: Elementary principles of statistical mechanics. In: The Collected Works of Gibbs, J. W., Vol. II. New York: Longmans 1931

    Google Scholar 

  • [Gri 1] Griffiths, R. B.: A proof that the free energy of a spin system is extensive. J. Math. Phys.5, 1215 (1964)

    Article  Google Scholar 

  • [Gri 2] Griffiths, R. B.: Free energy of interacting magnetic dipoles. Phys. Rev.176, 655 (1968)

    Article  Google Scholar 

  • [Her-Thi 1] Hertel, P., Thirring, W.: Free energy of gravitating Fermions. Commun. Math. Phys.24, 22 (1971)

    Article  Google Scholar 

  • [Her-Thi 2] Hertel, P., Thirring, W.: Thermodynamic instability of a system of gravitating Fermions. In: Quanten und Felder. Dürr, H. P., (ed.). Braunschweig: Vieweg 1971

    Google Scholar 

  • [H-N-T] Hertel, P., Narnhofer, H., Thirring, W.: Thermodynamic functions for Fermions with gravostatic and electrostatic interactions. Commun. Math. Phys.28, 159 (1972)

    Article  Google Scholar 

  • [Hew-Sav] Hewitt, E., Savage, L. J.: Symmetric measures on Cartesian products. Trans. Am. Math. Soc.80, 470 (1955)

    Google Scholar 

  • [Kie 1] Kiessling M. K.-H.: A complementary thermodynamic limit for classical Coulomb matter. J. Stat. Phys.59, 1157 (1990)

    Article  Google Scholar 

  • [Kie 2] Kiessling, M. K.-H.: On the equilibrium statistical mechanics of isothermal classical self-gravitating matter. J. Stat. Phys.55, 203 (1989)

    Article  Google Scholar 

  • [Kie 3] Kiessling, M. K.-H.: Statistical mechanics of classical particles with logarithmic interactions. To appear in Commun. Pure Appl. Math. (1992)

  • [Lee-Yan] Lee, T. D., Yang, C. N.: Statistical theory of equations of state and phase transitions. II. Lattice gas and Ising model. Phys. Rev.87, 410 (1952)

    Article  Google Scholar 

  • [Lie-Leb] Lieb, E. H., Lebowitz, J. L.: The constitution of matter: existence of thermodynamics for systems composed of electrons and nuclei. Adv. Math.9, 316 (1972)

    Article  Google Scholar 

  • [Mes 1] Messer, J.: The pressure of Fermions with gravitational interactions. Z. Phys.33, 313 (1979)

    Google Scholar 

  • [Mes 2] Messer, J.: Temperature dependent Thomas-Fermi theory. Lecture Notes in Physics No. 147. Berlin, Heidelberg, New York: Springer 1981

    Google Scholar 

  • [Mes 3] Messer, J.: On the gravitational phase transition in the Thomas-Fermi model. J. Math. Phys.22, 2910 (1981)

    Article  Google Scholar 

  • [Mes 4] Messer, J.: Non-monotonicity of the mass distribution and the existence of the gravitational phase transition. Phys. Lett.83A, 304 (1981)

    Google Scholar 

  • [Mes-Spo] Messer, J., Spohn, H.: Statistical mechanics of the isothermal Lane-Emden equation. J. Stat. Phys.29, 561 (1982)

    Article  Google Scholar 

  • [Pfl] Pflug, A.: Gravitating Fermions in an infinite configuration space. Commun. Math. Phys.78, 83 (1980)

    Article  Google Scholar 

  • [P-N-T] Posch, H. A., Narnhofer, H., Thirring, W.: Dynamics of unstable systems. Phys. Rev. A42, 1880 (1990)

    Article  Google Scholar 

  • [Ree-Sim] Reed, M., Simon, B.: Functional analysis. New York: Academic Press 1980

    Google Scholar 

  • [Rob-Rue] Robinson, D. W., Ruelle, D.: Mean entropy of states in classical statistical mechanics. Commun. Math. Phys.5, 288 (1967)

    Article  Google Scholar 

  • [Rue 1] Ruelle, D.: Statistical mechanics. New York: Benjamin 1969

    Google Scholar 

  • [Rue 2] Ruelle, D.: Classical statistical mechanics of a system of particles. Helv. Phys. Acta36, 183 (1963)

    Google Scholar 

  • [Rue 3] Ruelle, D.: Statistical mechanics of quantum systems of particles. Helv. Phys. Acta36, 789 (1963)

    Google Scholar 

  • [Sha-Teu] Shapiro, S., Teukolsky, S.: Black holes, white dwarfs and neutron stars. New York: Wiley 1983

    Google Scholar 

  • [Thi] Thirring, W.: Lehrbuch der mathematischen Physik 4. Vienna: Springer 1980

    Google Scholar 

  • [vHo] van Hove, L.: Quelques propriétés générales de l'intégrale de configuration d'un système de particule avec interaction. Physica15, 951 (1949)

    Article  Google Scholar 

  • [Yan-Lee] Yang, C. N., Lee, T. D.: Statistical theory of equations of state and phase transitions. I. Theory of condensation. Phys. Rev.87, 404 (1952)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by M. Aizenman

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiessling, M.K.H. Finite-volume statistical mechanics of two-component Coulomb-like systems and the principle of macroscopic equivalence. Commun.Math. Phys. 146, 311–331 (1992). https://doi.org/10.1007/BF02102630

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02102630

Keywords

Navigation