Skip to main content
Log in

Conserved organization of an avian histone gene cluster with inverted duplications of H3 and H4 genes

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

The organization of histone gene clusters of the duckCairina moschata was studied in the DNA inserts of two recombinant phage that overlap and feature identical histone gene arrangements but differ in sequence details and in the extent of repetition of an AT-rich motif in one of the nontranscribed spacer regions. These few but substantial differences between otherwise nearly identical histone gene groups suggest that we have independently isolated alleles of the same site of the duck genome or that this gene arrangement occurs (with slight variations) more than once per haploid genome. Within the histone gene cluster described, H3 and H4 genes are duplicated (with inverted orientation), whereas one H1 gene is flanked by single H2A and H2B genes. The arrangement of duck histone genes described here is identical to a subsection of the chicken genome but differs from any other published histone gene cluster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benton D, Davis RW (1977) Screening λgt recombinant clones by hybridization to single plaques in situ. Science 196:180–182

    PubMed  Google Scholar 

  • Birnstiel ML, Busslinger M, Strub K (1985) Transcription termination and 3′ processing: the end is in site! Cell 41:349–359

    Article  PubMed  Google Scholar 

  • Breathnach R, Chambon P (1981) Organization and expression of eucaryotic split genes coding for proteins. Annu Rev Biochem 50:349–383

    Article  PubMed  Google Scholar 

  • Cohn RH, Kedes LH (1979) Nonallelic histone gene clusters of individual sea urchins (Lytechinus pictus): mapping of homologies in coding and spacer DNA. Cell 18:855–864

    Article  PubMed  Google Scholar 

  • Coles LS, Wells JRE (1985) An H1 histone gene-specific 5′ element and evolution of H1 and H5 genes. Nucleic Acids Res 13:585–594

    PubMed  Google Scholar 

  • Currier TC, Nester EW (1976) Isolation of covalently closed circular DNA of high molecular weight from bacteria. Anal Biochem 76:431–441

    Article  PubMed  Google Scholar 

  • Czelusniak J, Goodman M, Hewett-Emmett D, Weiss ML, Venta PJ, Tashian RE (1982) Phylogenetic origins and adaptive evolution of avian and mammalian haemoglobin genes. Nature 298:297–300

    Article  PubMed  Google Scholar 

  • D'Andrea RJ, Coles LS, Lesnikowski C, Tabe L, Wells JRE (1985) Chromosomal organization of chicken histone genes: preferred associations and inverted duplications. Mol Cell Biol 5:3108–3115

    PubMed  Google Scholar 

  • Dodgson JB, Engel JD (1983) The nucleotide sequence of the adult chicken α-globin genes. J Biol Chem 258:4623–4629

    PubMed  Google Scholar 

  • Doenecke D, Tönjes R (1984) Conserved dyad symmetry structures at the 3′ end of H5 histone genes Analysis of the duck H5 gene. J Mol Biol 178:121–135

    Article  PubMed  Google Scholar 

  • Doenecke D, Tönjes R (1986) Differential distribution of lysine and arginine residues in the closely related histones H10 and H5. Analysis of a human H10 gene. J Mol Biol 187:461–464

    Article  PubMed  Google Scholar 

  • Engel JD, Rusling DJ, McCune KC, Dodgson JB (1983) Unusual structure of the chicken embryonic α-globin gene, π′. Proc Natl Acad Sci USA 80:1392–1396

    PubMed  Google Scholar 

  • Erbil C, Niessing J (1983) The primary structure of the duck αD-globin gene: an unusual 5′ splice junsction sequence. EMBO J 2:1339–1343

    PubMed  Google Scholar 

  • Georgiev O, Birnstiel ML (1985) The conserved CAAGAAAGA spacer sequence is an essential element for the formation of 3′ termini of the sea urchin H3 histone mRNA by RNA processing. EMBO J 4:481–489

    PubMed  Google Scholar 

  • Goldberg ML (1979) Sequence analysis ofDrosophila histone genes. PhD thesis, Stanford University, Stanford CA

    Google Scholar 

  • Grandy DK, Engel JD, Dodgson JB (1982) Complete nucleotide sequence of a chicken H2B histone gene. J Biol Chem 257: 8577–8580

    PubMed  Google Scholar 

  • Heintz N, Zernik M, Roeder RG (1981) The structure of the human histone genes: clustered but not tandemly repeated. Cell 24:661–668

    Article  PubMed  Google Scholar 

  • Hentschel CC, Birnstiel ML (1981) The organization and expression of histone gene families. Cell 25:301–313

    Article  PubMed  Google Scholar 

  • Krieg PA, Robins AJ, D'Andrea RJ, Wells JRE (1983) The chicken H5 gene is unlinked to core and H1 histone genes. Nucleic Acids Res 11:619–627

    PubMed  Google Scholar 

  • Lomedico P, Rosenthal N, Efstratiadis A, Gilbert W, Kolodner R, Tizard R (1979) The structure and evolution of the two nonallelic rat preproinsulin genes. Cell 18:545–558

    Article  PubMed  Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning. A laboratory manual. Cold Spring Harbor Press, Cold Spring Harbor NY

    Google Scholar 

  • Maxam AM, Gilbert W (1977) A new method for sequencing DNA. Proc Natl Acad Sci USA 74:560–564

    PubMed  Google Scholar 

  • Maxson R, Cohn R, Kedes L, Mohun T (1983) Expression and organization of histone genes. Annu Rev Genetics 17:239–277

    Article  Google Scholar 

  • Niessing J, Erbil C (1983) Chromosomal arrangement and the complete nucleotide sequence of the duck α-like globin genes αA, αD and π. In: Schnek G, Paul C (eds) Brussels hemoglobin symposium 1983. Editions de l'Université de Bruxelles. Brussels, pp 421–432

    Google Scholar 

  • Niessing J, Erbil C, Neubauer V (1982) The isolation and partial characterization of linked αA- and αD-globin genes from a duck DNA recombinant library. Gene 18:187–191

    Article  PubMed  Google Scholar 

  • Old RW, Woodland HR, Ballantine JEM, Aldridge TC, Newton CA, Bains WA, Turner PC (1982) Organization and expression of cloned histone gene clusters fromXenopus laevis andX. borealis. Nucleic Acids Res 10:7561–7580

    PubMed  Google Scholar 

  • Overton GC, Weinberg ES (1978) Length and sequence heterogeneity of the histone gene repeat unit of the sea urchin,S. purpuratus. Cell 14:247–257

    Article  PubMed  Google Scholar 

  • Perler F, Efstratiadis A, Lomedico P, Gilbert W, Kolodner R, Dodgson J (1980) The evolution of genes: the chicken preproinsulin gene. Cell 20:555–566

    Article  PubMed  Google Scholar 

  • Rigby PWJ, Dieckmann M, Rhodes C, Berg P (1977) Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J Mol Biol 113:237–251

    Article  PubMed  Google Scholar 

  • Ruiz-Carrillo A, Affolter M, Renaud J (1983) Genomic organization of the genes coding for the main six histones of the chicken: complete sequence of the H5 gene. J Mol Biol 170: 843–859

    PubMed  Google Scholar 

  • Schaffner W, Gross K, Telford J, Birnstiel M (1976) Molecular analysis of the histone gene cluster ofPsammechinus miliaris: II The arrangement of the five histone-coding and spacer sequences. Cell 8:471–478

    Article  PubMed  Google Scholar 

  • Sierra F, Lichtler A, Marashi F, Rickles R, van Dyke T, Clark S, Wells J, Stein GS, Stein J (1982) Organization of human histone genes. Proc Natl Acad Sci USA 79:1795–1799

    PubMed  Google Scholar 

  • Sittman DB, Chiu IM, Pan CJ, Cohn RH, Kedes LH, Marzluff WF (1981) Isolation of two clusters of mouse histone genes. Proc Natl Acad Sci USA 78:4078–4082

    PubMed  Google Scholar 

  • Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517

    PubMed  Google Scholar 

  • Sugarman BJ, Dodgson JB, Engel JD (1983) Genomic organization, DNA sequence, and expression of chicken embryonic histone genes. J Biol Chem 258:9005–9016

    PubMed  Google Scholar 

  • Tönjes R, Doenecke D (1985) Structure of a duck H3 variant histone gene: a H3 subtype with four cysteine residues. Gene 39:275–279

    Article  PubMed  Google Scholar 

  • Tönjes R, Doenecke D (1987) A highly conserved sequence in H1 histone genes as oligonucleotide hybridization probe: isolation and sequence of a duck H1 gene. J Mol Evol 25:361–370

    PubMed  Google Scholar 

  • Turner PC, Aldridge TC, Woodland HR, Old RW (1983) Nucleotide sequences of H1 histone genes fromXenopus laevis. A recently diverged pair of H1 genes and an unusual H1 pseudogene. Nucleic Acids Res 11:4093–4107

    PubMed  Google Scholar 

  • Vitelli L, Weinberg ES (1983) An inverted sea urchin histone gene sequence with breakpoints between TATA boxes and mRNA cap sites. Nucleic Acids Res 11:2135–2153

    PubMed  Google Scholar 

  • Wang SW, Robins AJ, D'Andrea R, Wells JRE (1985) Inverted duplication of histone genes and disposition of regulatory sequences. Nucleic Acids Res 13:1369–1387

    PubMed  Google Scholar 

  • Wells D, Bains W, Kedes L (1986) Codon usage in histone gene families of higher eukaryotes reflects functional rather than phylogenetic relationships. J Mol Evol 23:224–241

    PubMed  Google Scholar 

  • Winkfein RJ, Connor W, Mezquita J, Dixon GH (1985) Histone H4 and H2B genes in rainbow trout (Salmo gairdnerii). J Mol Evol 22:1–19

    PubMed  Google Scholar 

  • Zwollo P, Stein GS, Stein JL (1984) Variations in the organization of human genomic DNA segments containing H1 histone genes. Biochem Biophys Res Commun 124:988–993

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tönjes, R., Munk, K. & Doenecke, D. Conserved organization of an avian histone gene cluster with inverted duplications of H3 and H4 genes. J Mol Evol 28, 200–211 (1989). https://doi.org/10.1007/BF02102477

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02102477

Key words

Navigation