Skip to main content
Log in

Structural similarities between a mitochondrially encoded polypeptide and a family of prokaryotic respiratory toxins involved in plasmid maintenance suggest a novel mechanism for the evolutionary maintenance of mitochondrial DNA

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

Subunit 8 of mitochondrial ATP synthase (A8), a mitochondrially encoded polypeptide, has no known homologue in any prokaryotic or plastid ATP synthase, suggesting that it has been recruited to its present role in the enzyme from an extraneous source. The polypeptide is poorly conserved at the primary sequence level, but shows a well-conserved hydropathy profile. The hydropathy profiles of A8 from diverse taxa were compared with those of thehok family of prokaryotic respiratory toxins, some of whose members are involved in plasmid maintenance, through postsegregational killing of cells that lose the plasmid at cell division. Such comparisons revealed a highly significant degree of similarity, suggesting a functional relationship. Based on these findings, it is proposed that A8 evolved from ahok-like protein, whose original role was the maintenance of an extrachromosomal replicon in the endosymbiont ancestor of mitochondria. An aggressive mechanism for the evolutionary maintenance of mitochondrial DNA overcomes many of the failings of traditional explanations for its retention as a separate genome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bachmayer H, Benson AM, Yasunobu KT, Garrard WT, Whiteley HR (1968) Nonheme iron proteins. IV. Structural studies ofMicrococcus aerogenes rubredoxin. Biochemistry 7:986–996

    PubMed  Google Scholar 

  • Baker A, Schatz G (1987) Sequences from a prokaryotic genome or the mouse dihydrofolate reductase gene can restore the import of a truncated precursor protein into yeast mitochondria. Proc Natl Acad Sci USA 84:3117–3121

    PubMed  Google Scholar 

  • Banroques J, Delahodde A, Jacq C (1986) A mitochondrial RNA maturase gene transferred to the yeast nucleus can control mitochondrial mRNA splicing. Cell 46:837–844

    PubMed  Google Scholar 

  • Chomyn A, Mariottini P, Cleeter MNJ, Ragan CI, Doolittle RF, Matsuno-Yagi A, Hatefi Y, Attardi G (1985) Functional assignment of the products of the unidentified reading frames of human mitochondrial DNA. In: Quagliariello E, Slater EC, Palmieri F, Saccone C, Kroon AM (eds) Achievements and perspectives of mitochondrial research, vol II. Elsevier, Amsterdam, pp 259–275

    Google Scholar 

  • Clary DO, Wolstenholme DR (1985) The mitochondrial DNA molecule ofDrosophila yakuba: nucleotide sequence, gene organization and genetic code. J Mol Evol 22:252–272

    PubMed  Google Scholar 

  • Clayton DA (1982) Replication of animal mitochondrial DNA. Cell 28:693–705

    PubMed  Google Scholar 

  • Devereux J, Haeberli P, Smithies O (1984) A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12:387–395

    PubMed  Google Scholar 

  • Farrell LB, Nagley P (1987) Human liver cDNA clones encoding proteolipid subunit 9 of the mitochondrial ATPase complex. Biochem Biophys Res Commun 144:1257–1264

    PubMed  Google Scholar 

  • Fearnley IM, Walker JE (1986) Two overlapping genes in bovine mitochondrial DNA encode membrane components of ATP synthase. EMBO J 5:2003–2008

    PubMed  Google Scholar 

  • Flamm JA, Friessen JD, Otsuka AJ (1988) The nucleotide sequence of theEscherichia coli rts gene. Gene 74:555–558

    PubMed  Google Scholar 

  • Fox TD (1983) Mitochondrial genes in the nucleus. Nature 301: 371–372

    PubMed  Google Scholar 

  • Fukuda M, Wakasugi S, Tsuzuki T, Nomiyama H, Shimada T, Miyata T (1985) Mitochondrial DNA-like sequences in the human nuclear genome. Characterization and implications in the evolution of mitochondrial DNA. J Mol Biol 186:257–266

    PubMed  Google Scholar 

  • Gerdes K, Bech FW, Jørgensen ST, Løbner-Olesen A, Rasmussen PB, Atlung T, Boe L, Karlstrom O, Molin S, von Meyerburg K (1986) Mechanism of postsegregational killing by thehok gene product of theparB system of plasmid R1 and its homology with therelF gene product of theE. coli relB operon. EMBO J 5:2023–2029

    PubMed  Google Scholar 

  • Gerdes K, Helin K, Christensen OW, Løbner-Olesen A (1988) Translational control and differential RNA decay are key elements regulating postsegregational expression of the killer protein encoded by theparB locus of plasmid R1. J Mol Biol 203:119–129

    PubMed  Google Scholar 

  • Jacobs HT, Posakony JW, Grula JW, Roberts JW, Xin J-H, Britten RJ, Davidson EH (1983) Mitochondrial DNA sequences in the nuclear genome ofStrongylocentrotus purpuratus. J Mol Biol 165:609–632

    PubMed  Google Scholar 

  • Jacobs HT, Elliott DJ, Math VB, Farquharson A (1988) Nucleotide sequence and gene organization of sea urchin mitochondrial DNA. J Mol Biol 202:185–217

    PubMed  Google Scholar 

  • Kornberg A (1980) DNA replication. W.H. Freeman, San Francisco

    Google Scholar 

  • Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132

    PubMed  Google Scholar 

  • Masters BS, Stohl LL, Clayton DA (1987) Yeast mitochondrial RNA polymerase is homologous to those encoded by bacteriophage T3 and T7. Cell 51:89–99

    PubMed  Google Scholar 

  • Macreadie IG, Novitski CE, Maxwell RJ, John U, Ooi BG, McMullen GL, Lukins HB, Linnane AW, Nagley P (1983) Biogenesis of mitochondria: the mitochondrial gene (aap1) coding for mitochondrial ATPase subunit 8 inSaccharomyces cerevisiae. Nucleic Acids Res 11:4435–4451

    PubMed  Google Scholar 

  • Nagley P (1988) Eukaryotic membrane genetics: the F0 sector of mitochondrial ATP synthase. Trends Genet 4:46–52

    PubMed  Google Scholar 

  • Nagley P, Farrell LB, Gearing DP, Nero D, Meltzer S, Devenish RJ (1988) Assembly of functional proton-translocating ATPase complex in yeast mitochondria with cytoplasmically synthesized subunit 8, a polypeptide normally encoded within the organelle. Proc Natl Acad Sci USA 85:2091–2095

    PubMed  Google Scholar 

  • Netzker R, Kochel HG, Basak N, Kuentzel H (1982) Nucleotide sequence ofAspergillus nidulans mitochondrial genes coding for ATPase subunit 6, cytochrome oxidase subunit 3, seven unidentified proteins, four tRNAs and L-rRNA. Nucleic Acids Res 10:4783–4794

    PubMed  Google Scholar 

  • Nordström K, Austin SJ (1989) Mechanisms that contribute to the stable segregation of plasmids. Annu Rev Genet 23: 37–69

    PubMed  Google Scholar 

  • Polisky B (1988) colE1 replication control circuitry: sense from antisense. Cell 55:929–932

    PubMed  Google Scholar 

  • Power SD, Lochrie MA, Poyton RO (1986) The nuclear coded subunits of yeast cytochromec oxidase. The amino acid sequences of subunits VII and VIIa, structural similarities between the three smallest polypeptides of the holoenzyme, and implications for biogenesis. J Biol Chem 261:9206–9209

    PubMed  Google Scholar 

  • Roe BA, Ma D-P, Wilson RK, Wong JFH (1985) The complete nucleotide sequence of theXenopus laevis mitochondrial genome. J Biol Chem 260:9759–9774

    PubMed  Google Scholar 

  • Sakaguchi N, Kashiwamura S, Kimoto M, Thalmann P, Melchers F (1988) B lymphocyte lineage-restricted expression ofmbl, a gene with CD3-like structural properties. EMBO J 7: 3457–3464

    PubMed  Google Scholar 

  • Schagger H, Borchart U, Aquila H, Link TA, von Jagow G (1985) Isolation and amino acid sequence of the smallest subunit of beef heartbc 1 complex. FEBS Lett 190:89–94

    PubMed  Google Scholar 

  • Schinkel AH, Tabak HF (1989) Mitochondrial RNA polymerase: dual role in transcription and replication. Trends Genet 5:149–154

    PubMed  Google Scholar 

  • Tanaka M, Haniu M, Yasunobu KT, Norton TR (1975) Amino acid sequence of theAnthopleura xanthogrammica heart stimulant, Anthopleurin A. Biochemistry 16:204–208

    Google Scholar 

  • Thorsness PE, Fox TD (1990) Escape of DNA from mitochondria to the nucleus inSaccharomyces cerevisiae. Nature 346:376–379

    PubMed  Google Scholar 

  • Wechsler T, Suter F, Fuller RC, Zuber H (1985) The complete amino acid sequence of the bacteriochlorophyllc binding polypeptide from chlorosomes of the green photosynthetic bacteriumChloroflexus aurantiacus. FEBS Lett 181:173–178

    Google Scholar 

  • Wu WY, Du YC (1984) Amino acid sequence of cytotoxin 5 from the Chinese cobraNaja naja atra. Acta Biochim Biophys Sin 16:310–315

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacobs, H.T. Structural similarities between a mitochondrially encoded polypeptide and a family of prokaryotic respiratory toxins involved in plasmid maintenance suggest a novel mechanism for the evolutionary maintenance of mitochondrial DNA. J Mol Evol 32, 333–339 (1991). https://doi.org/10.1007/BF02102192

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02102192

Key words

Navigation