Mathematical Notes

, Volume 51, Issue 2, pp 213–215 | Cite as

Classes of regular and singular boundary problems

  • Yu. A. Konyaev
Brief Communications


Boundary Problem Singular Boundary Singular Boundary Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    E. Kamke, Handbook on Ordinary Differential Equations [Russian translation], Nauka, Moscow (1966).Google Scholar
  2. 2.
    S. A. Lomov, Introduction to the General Theory of Singular Perturbations [in Russian], Nauka, Moscow (1981).Google Scholar
  3. 3.
    A. B. Vasil'eva and V. F. Butuzov, Asymptotic Expansions of Solutions of Singularly Perturbed Equations [in Russian], Nauka, Moscow (1973).Google Scholar
  4. 4.
    M. N. Vishik and L. A. Lyusternik, Usp. Mat. Nauk,12, No. 5, 3–122 (1957).Google Scholar
  5. 5.
    V. F. Butuzov, Differents. Uravn.,12, No. 10 (1976).Google Scholar
  6. 6.
    V. I. Prokhorenko, Tr. Mosk. Énergeticheskogo Inst., No. 192, 73–77 (1989).Google Scholar
  7. 7.
    A. S. Varashkov, Izv. Vyssh. Uchebn. Zaved., Mat., No. 9, 5–9 (1984).Google Scholar
  8. 8.
    Yu. A. Konyaev, Abstracts of Reports to the All-Union Conference on Asymptotic Methods [in Russian], Alma-Ata (1979), pp. 67–69.Google Scholar
  9. 9.
    Yu. A. Konyaev, Differents. Uravn.,20, No. 11, 1999–2003 (1984).Google Scholar
  10. 10.
    Yu. A. Konyaev, Studies of Integro-Differential Equations [in Russian], No. 21, 212–221 (1988).Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • Yu. A. Konyaev
    • 1
  1. 1.Moscow Energy InstituteUSSR

Personalised recommendations