Advertisement

Communications in Mathematical Physics

, Volume 154, Issue 3, pp 613–646 | Cite as

New perspectives on the BRST-algebraic structure of string theory

  • Bong H. Lian
  • Gregg J. Zuckerman
Article

Abstract

Motivated by the descent equation in string theory, we give a new interpretation for the action of the symmetry charges on the BRST cohomology in terms of what we callthe Gerstenhaber bracket. This bracket is compatible with the graded commutative product in cohomology, and hence gives rise to a new class of examples of what mathematicians call aGerstenhaber algebra. The latter structure was first discussed in the context of Hochschild cohomology theory [11]. Off-shell in the (chiral) BRST complex, all the identities of a Gerstenhaber algebra hold up to homotopy. Applying our theory to thec=1 model, we give a precise conceptual description of the BRST-Gerstenhaber algebra of this model. We are led to a direct connection between the bracket structure here and the anti-bracket formalism in BV theory [29]. We then discuss the bracket in string backgrounds with both the left and the right movers. We suggest that the homotopy Lie algebra arising from our Gerstenhaber bracket is closely related to the HLA recently constructed by Witten-Zwiebach. Finally, we show that our constructions generalize to any topological conformal field theory.

Keywords

Neural Network String Theory Quantum Computing Direct Connection Conformal Field Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bouwknegt, P., McCarthy, J., Pilch, K.: Commun. Math. Phys.145, 541 (1992)CrossRefGoogle Scholar
  2. 2.
    Belavin, A., Polyakov, A.M., Zamolodchikov, A.A.: Infinite conformal symmetry in two dimensional quantum field theory. Nucl. Phys. B241, 333 (1984)CrossRefGoogle Scholar
  3. 3.
    Borcherds, R.E.: Vertex operator algebras, Kac-Moody algebras and the Monster. Proc. Natl. Acad. Sci. USA83, 3068 (1986)Google Scholar
  4. 4.
    Drinfel'd, V.G.: Quantum groups. ICM Proceedings, Berkeley, California, USA 798 (1986)Google Scholar
  5. 5.
    Dijkgraaf, R., Verlinde, H., Verlinde, E.: Notes on topological string theory and 2d quantum gravity. Preprint PUPT-1217, IASSNS-HEP-90/80Google Scholar
  6. 6.
    Eguchi, T., Yang, S.K.:N=2 superconformal models as topological field theories. Tokyo-preprint UT-564Google Scholar
  7. 7.
    Frenkel, I.B., Garland, H., Zuckerman, G.J.: Semi-infinite cohomology and string theory. Proc. Natl. Acad. Sci. USA83, 8442 (1986)Google Scholar
  8. 8.
    Frenkel, E.: Determinant formulas for the free field representations of the Virasoro and Kac-Moody algebras. Phys. Lett.285B, 71 (1992)Google Scholar
  9. 9.
    Frenkel, I.B., Lepowsky, J., Meurman, A.: Vertex operator algebras and the Monster. New York: Academic Press 1988Google Scholar
  10. 10.
    Frenkel, I.B., Huang, Y., Lepowsky, J.: On axiomatic approaches to vertex operator algebras and modules. Yale-Rutgers preprint. Dept. of Math., 1989Google Scholar
  11. 11.
    Gerstenhaber, M.: The cohomology structure of an associative ring. Ann. Math.78, No. 2, 267 (1962)Google Scholar
  12. 12.
    Gerstenhaber, M.: On the deformation of rings and algebras. Ann. Math.79, No. 1, 59 (1964)Google Scholar
  13. 13.
    Gerstenhaber, M., Giaquinto, A., Schack, S.: Quantum symmetry. PreprintGoogle Scholar
  14. 14.
    Kanno, H., Sarmadi, M.H.: BRST cohomology ring in 2d gravity coupled to minimal models. Preprint hepth9207078Google Scholar
  15. 15.
    Kutasov, D., Martinec, E., Seiberg, N.: Phys. Lett. B276, 437 (1992)Google Scholar
  16. 16.
    Lada, T., Stasheff, J.: Introduction to sh Lie algebras for physicists. Preprint UNC-MATH-92/2Google Scholar
  17. 17.
    Lian, B.H.: Semi-infinite homology and 2d quantum gravity. Dissertation, Yale Univ., May 1991Google Scholar
  18. 18.
    Lian, B.H.: On the classification of simple vertex operator algebras. Univ. of Toronto preprint, February 1992Google Scholar
  19. 19.
    Lian, B.H., Zuckerman, G.J.: New selection rules and physical states in 2d gravity; conformal gauge. Phys. Lett. B,254, No. 3, 4, 417 (1991)Google Scholar
  20. 20.
    Lian, B.H., Zuckerman, G.J.: 2d gravity withc=1 matter. Phys. Lett. B266, 21 (1991)CrossRefGoogle Scholar
  21. 21.
    Lian, B.H., Zuckerman, G.J.: Semi-infinite homology and 2D gravity (I). Commun. Math. Phys.145, 561 (1992)CrossRefGoogle Scholar
  22. 22.
    Moore, G., Seiberg, N.: Classical and quantum conformal field theory. Commun. Math. Phys.123, 177–254 (1989)CrossRefGoogle Scholar
  23. 23.
    Mukherji, S., Mukhi, S., Sen, A.: Phys. Lett.266B, 337 (1991)Google Scholar
  24. 24.
    Schouten, J.A.: Über Differentialkomitanten zweier kontravarianter Größen. Nederl. Acad. Wetensch. Proc. Ser. A43, 449–452 (1940)Google Scholar
  25. 25.
    Schlesinger, M., Stasheff, J.: The Lie algebra structure of tangent cohomology and deformation theory. J. Pure Appl. Alg.38, 313 (1985)CrossRefGoogle Scholar
  26. 26.
    Stasheff, J.: Differential graded Lie algebras, quasi-Hopf algebras and higher homotopy algebras. UNC Math. Preprint, 1991Google Scholar
  27. 27.
    Stasheff, J.: Homotopy associativity ofH-spaces. AMS Trans.108, 275 (1963)Google Scholar
  28. 28.
    Witten, E.: Ground ring of the two dimensional string theory. Nucl. Phys. B373, 187 (1992)CrossRefGoogle Scholar
  29. 29.
    Witten, E.: The anti-bracket formalism. preprint IASSNS-HEP-90/9Google Scholar
  30. 30.
    Witten, E.: On background independent open-string field theory. Preprint FERMILAB-PUBIASSNS-HEP-92/53Google Scholar
  31. 31.
    Witten, E., Zwiebach, B.: Algebraic structures and differential geometry in 2d string theory. Nucl. Phys. B377, 55 (1992)CrossRefGoogle Scholar
  32. 32.
    Wu, Y., Zhu, C.: The complete structure of the cohomology ring and associated symmetries ind=2 string theory. PreprintGoogle Scholar
  33. 33.
    Zhu, Y.: Vertex operator algebras, elliptic functions and modular forms. Yale Thesis, Dept. of Math., 1990Google Scholar
  34. 34.
    Zuckerman, G.J.: New applications of Gerstenhaber algebras. (In progress)Google Scholar
  35. 35.
    Zwiebach, B.: Closed string field theory: Quantum action and the B-V master equation. Preprint IASSNS-HEP-92/41Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Bong H. Lian
    • 1
  • Gregg J. Zuckerman
    • 2
  1. 1.Department of MathematicsUniversity of TorontoTorontoCanada
  2. 2.Department of MathematicsYale UniversityNew HavenUSA

Personalised recommendations