Skip to main content
Log in

Integrable structure of conformal field theory, quantum KdV theory and Thermodynamic Bethe Ansatz

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We construct the quantum versions of the monodromy matrices of KdV theory. The traces of these quantum monodromy matrices, which will be called as “T-operators,” act in highest weight Virasoro modules. TheT-operators depend on the spectral parameter λ and their expansion around λ=∞ generates an infinite set of commuting Hamiltonians of the quantum KdV system. TheT-operators can be viewed as the continuous field theory versions of the commuting transfermatrices of integrable lattice theory. In particular, we show that for the values\(c = 1 - 3\frac{{3(2n + 1)^2 }}{{2n + 3}}\),n=1,2,3 .... of the Virasoro central charge the eigenvalues of theT-operators satisfy a closed system of functional equations sufficient for determining the spectrum. For the ground-state eigenvalue these functional equations are equivalent to those of the massless Thermodynamic Bethe Ansatz for the minimal conformal field theoryM 2,2n+3; in general they provide a way to generalize the technique of the Thermodynamic Bethe Ansatz to the excited states. We discuss a generalization of our approach to the cases of massive field theories obtained by perturbing these Conformal Field Theories with the operator Φ1,3. The relation of theseT-operators to the boundary states is also briefly described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Itzykson, E., Saleur, H., Zuber, J.B. (eds.): Conformal Invariance and Applications to Statistical Mechanics. Singapore: World Scientific, 1988

    Google Scholar 

  2. Faddeev, L.D., Sklyanin, E.K., Takhtajan, L.A.: Quantum inverse scattering method. I. Theor. Math. Phys.40, 194–219 (1979) (in Russian)

    Google Scholar 

  3. Bogoliubov, N.M., Izergin, A.G., Korepin, V.E.: Correlation functions in integrable systems and the Quantum Inverse Scattering Method. Moscow: Nauka, 1992 (in Russian)

    Google Scholar 

  4. Baxter, R.J.: Exactly Solved Models in Statistical Mechanics. London: Academic Press, 1982

    Google Scholar 

  5. Zamolodchikov, Al.B.: From Tricritical Ising to Critical Ising by Thermodynamic Bethe Ansatz. Nucl. Phys.B358, 524–546 (1991)

    Google Scholar 

  6. Zamolodchikov, A.B., Zamolodchikov, Al.B.: Massless factorized scattering and sigma models with topological terms. Nucl. Phys.B379, 602–623 (1992)

    Google Scholar 

  7. Fendley, P., Saleur, H.: Massless integrable quantum field theories and massless scattering in 1+1 dimensions. Preprint USC-93-022, #hepth 9310058 (1993)

  8. McCoy, B.M.: The connection between statistical mechanics and Quantum Field Theory. Preprint ITP-SB-94-07, #hepth 940384 (1994); to appear. In: Bazhanov, V.V., Burden, C.J. (eds.) Field Theory and Statistical Mechanics. Proceedings 7-th Physics Summer School at the Australian National University. Canberra. January 1994, Singapore: World Scientific, 1995

    Google Scholar 

  9. Yang, C.N., Yang, C.P.: Thermodynamics of one-dimensional system of bosons with repulsive delta-function potential. J. Math. Phys.10, 1115–1123 (1969)

    Google Scholar 

  10. Zamolodchikov, Al.B.: Thermodynamic Bethe ansatz in relativistic models: Scaling 3-state Potts and Lee-Yang models. Nucl. Phys.B342, 695–720 (1990)

    Google Scholar 

  11. Fendley, P.: Exited state thermodynamics. Nucl. Phys.B374, 667–691 (1992)

    Google Scholar 

  12. Sasaki, R., Yamanaka, I.: Virasoro algebra, vertex operators, quantum Sine-Gordon and solvable Quantum Field theories. Adv. Stud. in Pure Math.16, 271–296 (1988)

    Google Scholar 

  13. Eguchi, T., Yang, S.K.: Deformation of conformal field theories and soliton equations. Phys. Lett.B224, 373–378 (1989)

    Google Scholar 

  14. Kupershmidt, B.A., Mathieu, P.: Quantum KdV like equations and perturbed Conformal Field theories. Phys. Lett.B227, 245–250 (1989)

    Google Scholar 

  15. Lax, P.D.: Integrals of nonlinear equations of evolution and solitary waves. Comm. Pure Appl. Math.21, 467–490 (1968)

    Google Scholar 

  16. Miura, R.M.: Korteweg-de Vries equation and generalizations. I. A remarkable explicit nonlinear transformation. Phys. Rev. Lett.19, 1202–1204 (1968)

    Google Scholar 

  17. Faddeev, L.D., Takhtajan, L.A.: Hamiltonian Method in the Theory of Solitons. New York: Springer, 1987

    Google Scholar 

  18. Feigin, B.L., Fuchs, D.B.: Representations of the Virasoro algebra. In: Faddeev, L.D., Mal'cev, A.A. (eds.) Topology. Proceedings, Leningrad 1982. Lect. Notes in Math.1060. Berlin, Heidelberg, New York: Springer, 1984

    Google Scholar 

  19. Dotsenko, Vl.S., Fateev, V.A.: Conformal algebra and multipoint correlation functions in 2d statistical models. Nucl. Phys.B240 [FS12], 312–348 (1984); Dotsenko, Vl.S., Fateev, V.A.: Four-point correlation functions and the operator algebra in 2d conformal invariant theories with central chargec≦1. Nucl. Phys.B251 [FS13] 691–734 (1985)

    Google Scholar 

  20. Fateev, V.A., Lukyanov, S.L.: Poisson-Lie group and classical W-algebras. Int. J. Mod. Phys.A7, 853–876 (1992); Fateev, V.A., Lukyanov, S.L.: Vertex operators and representations of quantum universal enveloping algebras. Int. J. Mod. Phys.A7, 1325–1359 (1992)

    Google Scholar 

  21. Kulish, P.P., Reshetikhin, N.Yu., Sklyanin, E.K.: Yang-Baxter equation and representation theory. Lett. Math. Phys.5, 393–403 (1981)

    Google Scholar 

  22. Fendley, P., Lesage, F., Saleur, H.: Solving 1d plasmas and 2d boundary problems using Jack polynomial and functional relations. Preprint USC-94-16, SPhT-94/107, #hepth 9409176 (1994)

  23. de Vega, H.J., Destri, C.: Unified approach to thermodynamic Bethe Ansatz and finite size corrections for lattice models and field theories. Preprint IFUM 477/FT, LPTHE 94-28, #hepth 9407117 (1994)

  24. Zamolodchikov, Al.B.: Private communication

  25. Kirilov, A.N., Reshetikhin, N.Yu.: Exact solution of the integrableXXZ Heisenberg model with arbitrary spin. J. Phys.A20, 1565–1585 (1987)

    Google Scholar 

  26. Bazhanov, V.V., Reshetikhin, N.Yu.: Critical RSOS models and conformal theory. Int. J. Mod. Phys.A4, 115–142 (1989)

    Google Scholar 

  27. Klümper, A., Pearce, P.A.: Conformal weights of RSOS lattice models and their fusion hierarchies. J. Phys.A183, 304–350 (1992)

    Google Scholar 

  28. Andrews, G., Baxter, R., Forrester, J.: Eight-vertex SOS-model and generalized Rogers-Ramanujan identities. J. Stat. Phys.35, 193–266 (1984)

    Google Scholar 

  29. Baxter, R.J., Pearce, P.A.: Hard hexagons: Interfacial tension and correlation length. J. Phys.A15, 897–910 (1982)

    Google Scholar 

  30. Kac, V.G.: Contravariant form for infinite-dimensional Lie algebras and superalgebras. Lect. Notes in Phys.94, Berlin, Heidelberg, New York: Springer, 1979, pp. 441–445

    Google Scholar 

  31. Zamolodchikov, Al.B.: On the TBA Equations for Reflectionless ADE Scattering Theories. Phys. Lett.B253, 391 (1991)

    Google Scholar 

  32. Klassen, T.R., Melzer, E.: Spectral flow between conformal field theories in 1+1 dimensions. Nucl. Phys.B370, 511–570 (1992)

    Google Scholar 

  33. Freund, P.G.O., Klassen, T.R., Melzer, E.:S-matrices for perturbations of certain conformal field theories. Phys. Lett.B229, 243–247 (1989)

    Google Scholar 

  34. Smirnov, F.A.: Reductions of Quantum Sine-Gordon Model as Perturbations of Minimal Models of Conformal Field Theory. Nucl. Phys.B337, 156–180 (1990)

    Google Scholar 

  35. Bazhanov, V.V., Lukyanov, S.L., Zamolodchikov, A.B.: In preparation

  36. Kedem, R., Klassen, T.R., McCoy, B.M., Melzer, E.: Fermionic sum representations for conformal field theory characters. Phys. Lett.B307, 68–76 (1993)

    Google Scholar 

  37. Zamolodchikov, A.B.: Integrable field theory from conformal field theory. Adv. Stud. in Pure Math.19, 641–674 (1989)

    Google Scholar 

  38. LeClair, A.: Restricted Sine-Gordon theory and the minimal conformal series. Phys. Lett.B230, 103–107 (1989)

    Google Scholar 

  39. Yurov, V.P., Zamolodchikov, Al.B.: Truncated conformal space approach to scaling Lee-Yang model. Int. J. Mod. Phys.A5, 3221–3245 (1990)

    Google Scholar 

  40. Cardy, J.: Boundary conditions, fusion rules and the Verlinde formula. Nucl. Phys.B324, 581–596 (1989)

    Google Scholar 

  41. Ghosal, S., Zamolodchikov, A.B.: Boundary S-matrix and boundary state in two-dimensional integrable Quantum Field theory. Int. J. Mod. Phys.A9, 3841–3885 (1994)

    Google Scholar 

  42. Verlinde, E.: Fusion rules and modular transformations in 2d Conformal Field Theory. Nucl. Phys.B300, 360–376 (1988)

    Google Scholar 

  43. Zamolodchikov, Al.B.: Thermodynamic Bethe ansatz for RSOS scattering theories. Nucl. Phys.B358, 497–523 (1991)

    Google Scholar 

  44. Drinfel'd, V.G., Sokolov, V.V.: Lie algebras and equations of Korteweg de Vries type. J. Sov. Math.30, 1975–1980 (1985)

    Google Scholar 

  45. Feigin, B., Frenkel, E.: Integrals of motion and quantum groups. To appear in: Lect. Notes in Math.1620: Springer, 1995, #hepth 9310022

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by M. Jimbo

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bazhanov, V.V., Lukyanov, S.L. & Zamolodchikov, A.B. Integrable structure of conformal field theory, quantum KdV theory and Thermodynamic Bethe Ansatz. Commun.Math. Phys. 177, 381–398 (1996). https://doi.org/10.1007/BF02101898

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02101898

Keywords

Navigation